Do you want to publish a course? Click here

Visual Reasoning by Progressive Module Networks

271   0   0.0 ( 0 )
 Added by Seung Wook Kim
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Humans learn to solve tasks of increasing complexity by building on top of previously acquired knowledge. Typically, there exists a natural progression in the tasks that we learn - most do not require completely independent solutions, but can be broken down into simpler subtasks. We propose to represent a solver for each task as a neural module that calls existing modules (solvers for simpler tasks) in a functional program-like manner. Lower modules are a black box to the calling module, and communicate only via a query and an output. Thus, a module for a new task learns to query existing modules and composes their outputs in order to produce its own output. Our model effectively combines previous skill-sets, does not suffer from forgetting, and is fully differentiable. We test our model in learning a set of visual reasoning tasks, and demonstrate improved performances in all tasks by learning progressively. By evaluating the reasoning process using human judges, we show that our model is more interpretable than an attention-based baseline.



rate research

Read More

760 - Wenhu Chen , Zhe Gan , Linjie Li 2019
Neural Module Network (NMN) exhibits strong interpretability and compositionality thanks to its handcrafted neural modules with explicit multi-hop reasoning capability. However, most NMNs suffer from two critical drawbacks: 1) scalability: customized module for specific function renders it impractical when scaling up to a larger set of functions in complex tasks; 2) generalizability: rigid pre-defined module inventory makes it difficult to generalize to unseen functions in new tasks/domains. To design a more powerful NMN architecture for practical use, we propose Meta Module Network (MMN) centered on a novel meta module, which can take in function recipes and morph into diverse instance modules dynamically. The instance modules are then woven into an execution graph for complex visual reasoning, inheriting the strong explainability and compositionality of NMN. With such a flexible instantiation mechanism, the parameters of instance modules are inherited from the central meta module, retaining the same model complexity as the function set grows, which promises better scalability. Meanwhile, as functions are encoded into the embedding space, unseen functions can be readily represented based on its structural similarity with previously observed ones, which ensures better generalizability. Experiments on GQA and CLEVR datasets validate the superiority of MMN over state-of-the-art NMN designs. Synthetic experiments on held-out unseen functions from GQA dataset also demonstrate the strong generalizability of MMN. Our code and model are released in Github https://github.com/wenhuchen/Meta-Module-Network.
Despite the improvements in perception accuracies brought about via deep learning, developing systems combining accurate visual perception with the ability to reason over the visual percepts remains extremely challenging. A particular application area of interest from an accessibility perspective is that of reasoning over statistical charts such as bar and pie charts. To this end, we formulate the problem of reasoning over statistical charts as a classification task using MAC-Networks to give answers from a predefined vocabulary of generic answers. Additionally, we enhance the capabilities of MAC-Networks to give chart-specific answers to open-ended questions by replacing the classification layer by a regression layer to localize the textual answers present over the images. We call our network ChartNet, and demonstrate its efficacy on predicting both in vocabulary and out of vocabulary answers. To test our methods, we generated our own dataset of statistical chart images and corresponding question answer pairs. Results show that ChartNet consistently outperform other state-of-the-art methods on reasoning over these questions and may be a viable candidate for applications containing images of statistical charts.
Psychologists recognize Ravens Progressive Matrices as a very effective test of general human intelligence. While many computational models have been developed by the AI community to investigate different forms of top-down, deliberative reasoning on the test, there has been less research on bottom-up perceptual processes, like Gestalt image completion, that are also critical in human test performance. In this work, we investigate how Gestalt visual reasoning on the Ravens test can be modeled using generative image inpainting techniques from computer vision. We demonstrate that a self-supervised inpainting model trained only on photorealistic images of objects achieves a score of 27/36 on the Colored Progressive Matrices, which corresponds to average performance for nine-year-old children. We also show that models trained on other datasets (faces, places, and textures) do not perform as well. Our results illustrate how learning visual regularities in real-world images can translate into successful reasoning about artificial test stimuli. On the flip side, our results also highlight the limitations of such transfer, which may explain why intelligence tests like the Ravens are often sensitive to peoples individual sociocultural backgrounds.
This paper presents a new framework for training image-based classifiers from a combination of texts and images with very few labels. We consider a classification framework with three modules: a backbone, a relational reasoning component, and a classification component. While the backbone can be trained from unlabeled images by self-supervised learning, we can fine-tune the relational reasoning and the classification components from external sources of knowledge instead of annotated images. By proposing a transformer-based model that creates structured knowledge from textual input, we enable the utilization of the knowledge in texts. We show that, compared to the supervised baselines with 1% of the annotated images, we can achieve ~8x more accurate results in scene graph classification, ~3x in object classification, and ~1.5x in predicate classification.
While sophisticated Visual Question Answering models have achieved remarkable success, they tend to answer questions only according to superficial correlations between question and answer. Several recent approaches have been developed to address this language priors problem. However, most of them predict the correct answer according to one best output without checking the authenticity of answers. Besides, they only explore the interaction between image and question, ignoring the semantics of candidate answers. In this paper, we propose a select-and-rerank (SAR) progressive framework based on Visual Entailment. Specifically, we first select the candidate answers relevant to the question or the image, then we rerank the candidate answers by a visual entailment task, which verifies whether the image semantically entails the synthetic statement of the question and each candidate answer. Experimental results show the effectiveness of our proposed framework, which establishes a new state-of-the-art accuracy on VQA-CP v2 with a 7.55% improvement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا