Do you want to publish a course? Click here

A homogeneous comparison between the chemical composition of the Large Magellanic Cloud and the Sagittarius dwarf galaxy

65   0   0.0 ( 0 )
 Added by Alice Minelli
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Similarities in the chemical composition of two of the closest Milky Way satellites, namely the Large Magellanic Cloud (LMC) and the Sagittarius (Sgr) dwarf galaxy, have been proposed in the literature, suggesting similar chemical enrichment histories between the two galaxies. This proposition, however, rests on different abundance analyses, which likely introduce various systematics that hamper a fair comparison among the different data sets. In order to bypass this issue (and highlight real similarities and differences between their abundance patterns), we present a homogeneous chemical analysis of 30 giant stars in LMC, 14 giant stars in Sgr and 14 giants in the Milky Way, based on high-resolution spectra taken with the spectrograph UVES-FLAMES. The LMC and Sgr stars, in the considered metallicity range ([Fe/H]>-1.1 dex), show very similar abundance ratios for almost all the elements, with differences only in the heavy s-process elements Ba, La and Nd, suggesting a different contribution by asymptotic giant branch stars. On the other hand, the two galaxies have chemical patterns clearly different from those measured in the Galactic stars, especially for the elements produced by massive stars. This finding suggests the massive stars contributed less to the chemical enrichment of these galaxies with respect to the Milky Way. The derived abundances support similar chemical enrichment histories for the LMC and Sgr.

rate research

Read More

Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC~1718 are presented, based on high resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NGC~1718 to be a fairly metal-rich cluster, with an average [Fe/H] ~ -0.55+/-0.01. The two red giants appear to have primordial O, Na, Mg, and Al abundances, with no convincing signs of a composition difference between the two stars---hence, based on these two stars, NGC~1718 shows no evidence for hosting multiple populations. The Mg abundance is lower than Milky Way field stars, but is similar to LMC field stars at the same metallicity. The previous claims of very low [Mg/Fe] in NGC~1718 are therefore not supported in this study. Other abundances (Si, Ca, Ti, V, Mn, Ni, Cu, Rb, Y, Zr, La, and Eu) all follow the LMC field star trend, demonstrating yet again that (for most elements) globular clusters trace the abundances of their host galaxys field stars. Similar to the field stars, NGC~1718 is found to be mildly deficient in explosive $alpha$-elements, but moderately to strongly deficient in O, Na, Mg, Al, and Cu, elements which form during hydrostatic burning in massive stars. NGC~1718 is also enhanced in La, suggesting that it was enriched in ejecta from metal-poor AGB stars.
We aim to reveal the physical properties and chemical composition of the cores in the California molecular cloud (CMC), so as to better understand the initial conditions of star formation. We made a high-resolution column density map (18.2) with Herschel data, and extracted a complete sample of the cores in the CMC with the textsl{fellwalker} algorithm. We performed new single-pointing observations of molecular lines near 90 GHz with the IRAM 30m telescope along the main filament of the CMC. In addition, we also performed a numerical modeling of chemical evolution for the cores under the physical conditions. We extracted 300 cores, of which 33 are protostellar and 267 are starless cores. About 51% (137 of 267) of the starless cores are prestellar cores. Three cores have the potential to evolve into high-mass stars. The prestellar core mass function (CMF) can be well fit by a log-normal form. The high-mass end of the prestellar CMF shows a power-law form with an index $alpha=-0.9pm 0.1$ that is shallower than that of the Galactic field stellar mass function. Combining the mass transformation efficiency ($varepsilon$) from the prestellar core to the star of $15pm 1%$ and the core formation efficiency (CFE) of 5.5%, we suggest an overall star formation efficiency of about 1% in the CMC. In the single-pointing observations with the IRAM 30m telescope, we find that 6 cores show blue-skewed profile, while 4 cores show red-skewed profile. [$rm {HCO}^{+}$]/[HNC] and [$rm {HCO}^{+}$]/$rm [N_{2}H^{+}]$ in protostellar cores are higher than those in prestellar cores; this can be used as chemical clocks. The best-fit chemical age of the cores with line observations is $sim 5times 10^4$~years.
We have assembled a large-area spectroscopic survey of giant stars in the Sagittarius (Sgr) dwarf galaxy core. Using medium resolution (R ~15,000), multifiber spectroscopy we have measured velocities of these stars, which extend up to 12 degrees from the galaxys center (3.7 core radii or 0.4 times the King limiting radius). From these high quality spectra we identify 1310 Sgr members out of 2296 stars surveyed distributed across 24 different fields across the Sgr core. Additional slit spectra were obtained of stars bridging from the Sgr core to its trailing tail. Our systematic, large area sample shows no evidence for significant rotation, a result at odds with the ~20 km/s rotation required as an explanation for the bifurcation seen in the Sgr tidal stream; the observed small (<= 4 km/s) velocity trend along primarily the major axis is consistent with models of the projected motion of an extended body on the sky with no need for intrinsic rotation. The Sgr core is found to have a flat velocity dispersion (except for a kinematically colder center point) across its surveyed extent and into its tidal tails, a property that matches the velocity dispersion profiles measured for other Milky Way dwarf spheroidal (dSph) galaxies. We comment on the possible significance of this observed kinematical similarity for the dynamical state of the other classical Milky Way dSphs in light of the fact that Sgr is clearly a strongly tidally disrupted system.
What is the mass of the progenitor of the Sagittarius (Sgr) dwarf galaxy? Here, we reassemble the stellar debris using SDSS and 2MASS data to find the total luminosity and likely mass. We find that the luminosity is in the range 9.6-13.2 x10^7 solar luminosities or M_V ~ -15.1 - 15.5, with 70% of the light residing in the debris streams. The progenitor is somewhat fainter than the present-day Small Magellanic Cloud, and comparable in brightness to the M31 dwarf spheroidals NGC 147 and NGC 185. Using cosmologically motivated models, we estimate that the mass of Sgrs dark matter halo prior to tidal disruption was ~10^10 solar masses.
Surveys of Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) have yielded a fairly complete catalog of 154 known stars. We have conducted a comprehensive, multiwavelength study of the interstellar/circumstellar environments of WR stars, using the Magellanic Cloud Emission Line Survey (MCELS) images in the H$alpha$, [O III], and [S II] lines; Spitzer Space Telescope 8 and 24 $mu$m images; Blanco 4m Telescope H$alpha$ CCD images; and Australian Telescope Compact Array (ATCA) + Parkes Telescope H I data cube of the LMC. We have also examined whether the WR stars are in OB associations, classified the H II environments of WR stars, and used this information to qualitatively assess the WR stars evolutionary stages. The 30 Dor giant H II region has active star formation and hosts young massive clusters, thus we have made statistical analyses for 30 Dor and the rest of the LMC both separately and altogether. Due to the presence of massive young clusters, the WR population in 30 Dor is quite different from that from elsewhere in the LMC. We find small bubbles ($<$50 pc diameter) around $sim$12% of WR stars in the LMC, most of which are WN stars and not in OB associations. The scarcity of small WR bubbles is discussed. Spectroscopic analyses of abundances are needed to determine whether the small WR bubbles contain interstellar medium or circumstellar medium. Implications of the statistics of interstellar environments and OB associations around WR stars are discussed. Multiwavelength images of each LMC WR star are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا