No Arabic abstract
We aim to reveal the physical properties and chemical composition of the cores in the California molecular cloud (CMC), so as to better understand the initial conditions of star formation. We made a high-resolution column density map (18.2) with Herschel data, and extracted a complete sample of the cores in the CMC with the textsl{fellwalker} algorithm. We performed new single-pointing observations of molecular lines near 90 GHz with the IRAM 30m telescope along the main filament of the CMC. In addition, we also performed a numerical modeling of chemical evolution for the cores under the physical conditions. We extracted 300 cores, of which 33 are protostellar and 267 are starless cores. About 51% (137 of 267) of the starless cores are prestellar cores. Three cores have the potential to evolve into high-mass stars. The prestellar core mass function (CMF) can be well fit by a log-normal form. The high-mass end of the prestellar CMF shows a power-law form with an index $alpha=-0.9pm 0.1$ that is shallower than that of the Galactic field stellar mass function. Combining the mass transformation efficiency ($varepsilon$) from the prestellar core to the star of $15pm 1%$ and the core formation efficiency (CFE) of 5.5%, we suggest an overall star formation efficiency of about 1% in the CMC. In the single-pointing observations with the IRAM 30m telescope, we find that 6 cores show blue-skewed profile, while 4 cores show red-skewed profile. [$rm {HCO}^{+}$]/[HNC] and [$rm {HCO}^{+}$]/$rm [N_{2}H^{+}]$ in protostellar cores are higher than those in prestellar cores; this can be used as chemical clocks. The best-fit chemical age of the cores with line observations is $sim 5times 10^4$~years.
The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associated with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appear to be a smooth transition from the pre- to the proto-stellar phase. In particular, for proto-stellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.
It is important to understand the origin of molecular line intensities and chemical composition in the molecular-cloud scale in the Galactic sources because it serves as a benchmark to compare with the chemical compositions of extragalactic sources. Recent observations of the 3-mm spectra averaged over the 10-pc scale show similar spectral pattern among sources for molecular lines HCN, HCO$^+$, CCH, HNC, HNCO, c-C$_3$H$_2$, CS, SO, N$_2$H$^+$, and CN. To constrain the average physical property emitting such spectral pattern, we model molecular spectra using a time-dependent gas-grain chemical model followed by a radiative transfer calculation. We use a grid of physical parameters such as the density $n=3 times 10^2 - 3times 10^4$ cm$^{-3}$, the temperature, $T=10-30$ K, the visual extinction $A_{rm V} = 2,4,10$ mag, the cosmic-ray ionization rate $zeta = 10^{-17} - 10^{-16}$ s$^{-1}$, and the sulfur elemental abundance $S/H = 8times 10^{-8} - 8times 10^{-7}$. Comparison with the observed spectra indicates that spectra are well reproduced with the relatively low density of $n=(1-3) times 10^3,$cm$^{-3}$, $T=10,$K, $zeta = 10^{-17}$ s$^{-1}$, and the short chemistry timescale of $10^5$ yrs. This short chemistry timescale may indicate that molecular clouds are constantly affected by the turbulence, and exposed to low-density, low $A_{rm V}$ regions that refreshes the chemical clock by UV radiation. The relatively low density obtained is orders of magnitude lower than the commonly-quoted critical density in the optically thin case. Meanwhile, this range of density is consistent with results from recent observational analysis of molecular-cloud-scale mapping.
We performed a multi-wavelength observation toward LkHa 101 embedded cluster and its adjacent 85arcmin*60arcmin region. The LkHa 101 embedded cluster is the first and only one significant cluster in California molecular cloud (CMC). These observations have revealed that the LkHa 101 embedded cluster is just located at the projected intersectional region of two filaments. One filament is the highest-density section of the CMC, the other is a new identified filament with a low-density gas emission. Toward the projected intersection, we find the bridging features connecting the two filaments in velocity, and identify a V-shape gas structure. These agree with the scenario that the two filaments are colliding with each other. Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we measured that the RRL velocity of the LkHa 101 H II region is 0.5 km/s, which is related to the velocity component of the CMC filament. Moreover, there are some YSOs distributed outside the intersectional region. We suggest that the cloud-cloud collision together with the fragmentation of the main filament may play an important role in the YSOs formation of the cluster.
We have mapped six molecular cloud cores in the Orion A giant molecular cloud (GMC), whose kinetic temperatures range from 10 to 30 K, in CCS and N2H+ with Nobeyama 45 m radio telescope to study their chemical characteristics. We identified 31 intensity peaks in the CCS and N2H+ emission in these molecular cloud cores. It is found for cores with temperatures lower than ~ 25 K that the column density ratio of N(N2H+)/N(CCS) is low toward starless core regions while it is high toward star-forming core regions, in case that we detected both of the CCS and N2H+ emission. This is very similar to the tendency found in dark clouds (kinetic temperature ~ 10 K). The criterion found in the Orion A GMC is N(N2H+)/N(CCS) ~ 2-3. In some cases, the CCS emission is detected toward protostars as well as the N2H+ emission. Secondary late-stage CCS peak in the chemical evolution caused by CO depletion may be a possible explanation for this. We found that the chemical variation of CCS and N2H+ can also be used as a tracer of evolution in warm (10-25 K) GMC cores. On the other hand, some protostars do not accompany N2H+ intensity peaks but are associated with dust continuum emitting regions, suggesting that the N2H+ abundance might be decreased due to CO evaporation in warmer star-forming sites.
Aims. The process of gravitational fragmentation in the L1482 molecular filament of the California molecular cloud is studied by combining several complementary observations and physical estimates. We investigate the kinematic and dynamical states of this molecular filament and physical properties of several dozens of dense molecular clumps embedded therein. Methods. We present and compare molecular line emission observations of the J=2--1 and J=3--2 transitions of 12CO in this molecular complex, using the KOSMA 3-meter telescope. These observations are complemented with archival data observations and analyses of the 13CO J=1--0 emission obtained at the Purple Mountain Observatory 13.7-meter radio telescope at Delingha Station in QingHai Province of west China, as well as infrared emission maps from the Herschel Space Telescope online archive, obtained with the SPIRE and PACS cameras. Comparison of these complementary datasets allow for a comprehensive multi-wavelength analysis of the L1482 molecular filament. Results. We have identified 23 clumps along the molecular filament L1482 in the California molecular cloud. All these molecular clumps show supersonic non-thermal gas motions. While surprisingly similar in mass and size to the much better known Orion molecular cloud, the formation rate of high-mass stars appears to be suppressed in the California molecular cloud relative to that in the Orion molecular cloud based on the mass-radius threshold derived from the static Bonnor Ebert sphere. Our analysis suggests that these molecular filaments are thermally supercritical and molecular clumps may form by gravitational fragmentation along the filament. Instead of being static, these molecular clumps are most likely in processes of dynamic evolution.