Do you want to publish a course? Click here

Chemical Abundances of Two Stars in the Large Magellanic Cloud Globular Cluster NGC~1718

127   0   0.0 ( 0 )
 Added by Charli Sakari
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC~1718 are presented, based on high resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NGC~1718 to be a fairly metal-rich cluster, with an average [Fe/H] ~ -0.55+/-0.01. The two red giants appear to have primordial O, Na, Mg, and Al abundances, with no convincing signs of a composition difference between the two stars---hence, based on these two stars, NGC~1718 shows no evidence for hosting multiple populations. The Mg abundance is lower than Milky Way field stars, but is similar to LMC field stars at the same metallicity. The previous claims of very low [Mg/Fe] in NGC~1718 are therefore not supported in this study. Other abundances (Si, Ca, Ti, V, Mn, Ni, Cu, Rb, Y, Zr, La, and Eu) all follow the LMC field star trend, demonstrating yet again that (for most elements) globular clusters trace the abundances of their host galaxys field stars. Similar to the field stars, NGC~1718 is found to be mildly deficient in explosive $alpha$-elements, but moderately to strongly deficient in O, Na, Mg, Al, and Cu, elements which form during hydrostatic burning in massive stars. NGC~1718 is also enhanced in La, suggesting that it was enriched in ejecta from metal-poor AGB stars.



rate research

Read More

In this paper we refine our method for the abundance analysis of high resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old ($>$10 Gyr) Milky Way GCs. Here we extend the technique to young clusters using a training set of 9 GCs in the Large Magellanic Cloud (LMC). Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a $sim$5 Gyr range, the ages of $sim$2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a $sim$200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyrs with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old Milky Way GCs (0.1 dex); the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of the $sim 20$ elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope.
The tidal disruption of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, the Sgr dSph is suspected to have lost a number of globular clusters (GC). Many Galactic GC are suspected to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed due to chemical similarities, others exist whose chemical composition has never been investigated. NGC 5053 and NGC 5634 are two among these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. We analize high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal poor Sgr dSph main body population. We derive a metallicity of [FeII/H]=-2.26+-0.10 for NGC 5053, and of [FeI/H]=-1.99+-0.075 and -1.97+-0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal poor globular clusters in the MW. Both clusters display an alpha enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. The chemistry of the Sgr dSph main body populations is similar to the one of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system.
Multiple populations revealed in globular clusters (GCs) are important windows to the formation and evolution of these stellar systems. The metal-rich GCs in the Galactic bulge are an indispensable part of this picture, but the high optical extinction in this region has prevented extensive research. In this work, we use the high resolution near-infrared (NIR) spectroscopic data from APOGEE to study the chemical abundances of NGC 6553, which is one of the most metal-rich bulge GCs. We identify ten red giants as cluster members using their positions, radial velocities, iron abundances, and NIR photometry. Our sample stars show a mean radial velocity of $-0.14pm5.47$ km s$^{-1}$, and a mean [Fe/H] of $-0.15pm 0.05$. We clearly separate two populations of stars in C and N in this GC for the first time. NGC 6553 is the most metal-rich GC where the multiple stellar population phenomenon is found until now. Substantial chemical variations are also found in Na, O, and Al. However, the two populations show similar Si, Ca, and iron-peak element abundances. Therefore, we infer that the CNO, NeNa, and MgAl cycles have been activated, but the MgAl cycle is too weak to show its effect on Mg. Type Ia and Type II supernovae do not seem to have significantly polluted the second generation stars. Comparing with other GC studies, NGC 6553 shows similar chemical variations as other relatively metal-rich GCs. We also confront current GC formation theories with our results, and suggest possible avenues for improvement in the models.
Globular Clusters are among the oldest objects in the Galaxy, thus their researchers are key to understanding the processes of evolution and formation that the galaxy has experienced in early stages. Spectroscopic studies allow us to carry out detailed analyzes on the chemical composition of Globular Clusters. The aim of our research is to perform a detailed analysis of chemical abundances to a sample of stars of the Bulge Globular Cluster NGC 6553, in order to determine chemical patterns that allow us to appreciate the phenomenon of Multiple Population in one of the most metal-rich Globular Clusters in the Galaxy. This analysis is being carried out with data obtained by FLAMES/GIRAFFE spectrograph, VVV Survey and DR2 of Gaia Mission. We analyzed 20 Red Horizontal Branch Stars, being the first extensive spectroscopic abundance analysis for this cluster and measured 8 chemical elements (O, Na, Mg, Si, Ca, Ti, Cr and Ni), deriving a mean iron content of $[Fe/H] = -0.10pm0.01$ and a mean of $[alpha/Fe] = 0.21pm0.02$, considering Mg, Si, Ca and Ti (errors on the mean). We found a significant spread in the content of Na but a small or negligible in O. We did not find an intrinsic variation in the content of $alpha$ and iron-peak elements, showing a good agreement with the trend of the Bulge field stars, suggesting a similar origin and evolution.
168 - Eugenio Carretta 2012
We study the distribution of aluminum abundances among red giants in the peculiar globular cluster NGC 1851. Aluminum abundances were derived from the strong doublet Al I 8772-8773 A measured on intermediate resolution FLAMES spectra of 50 cluster stars acquired under the Gaia-ESO public survey. We coupled these abundances with previously derived abundance of O, Na, Mg to fully characterize the interplay of the NeNa and MgAl cycles of H-burning at high temperature in the early stellar generation in NGC 1851. The stars in our sample show well defined correlations between Al,Na and Si; Al is anticorrelated with O and Mg. The average value of the [Al/Fe] ratio steadily increases going from the first generation stars to the second generation populations with intermediate and extremely modified composition. We confirm on a larger database the results recently obtained by us (Carretta et al. 2011a): the pattern of abundances of proton-capture elements implies a moderate production of Al in NGC 1851. We find evidence of a statistically significant positive correlation between Al and Ba abundances in the more metal-rich component of red giants in NGC 1851.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا