No Arabic abstract
Contemporary state-of-the-art approaches to Zero-Shot Learning (ZSL) train generative nets to synthesize examples conditioned on the provided metadata. Thereafter, classifiers are trained on these synthetic data in a supervised manner. In this work, we introduce Z2FSL, an end-to-end generative ZSL framework that uses such an approach as a backbone and feeds its synthesized output to a Few-Shot Learning (FSL) algorithm. The two modules are trained jointly. Z2FSL solves the ZSL problem with a FSL algorithm, reducing, in effect, ZSL to FSL. A wide class of algorithms can be integrated within our framework. Our experimental results show consistent improvement over several baselines. The proposed method, evaluated across standard benchmarks, shows state-of-the-art or competitive performance in ZSL and Generalized ZSL tasks.
Zero-shot learning (ZSL) aims at understanding unseen categories with no training examples from class-level descriptions. To improve the discriminative power of ZSL, we model the visual learning process of unseen categories with inspiration from the psychology of human creativity for producing novel art. First, we propose CIZSL-v1 as a creativity inspired model for generative ZSL. We relate ZSL to human creativity by observing that ZSL is about recognizing the unseen, and creativity is about creating a likable unseen. We introduce a learning signal inspired by creativity literature that explores the unseen space with hallucinated class-descriptions and encourages careful deviation of their visual feature generations from seen classes while allowing knowledge transfer from seen to unseen classes. Second, CIZSL-v2 is proposed as an improved version of CIZSL-v1 for generative zero-shot learning. CIZSL-v2 consists of an investigation of additional inductive losses for unseen classes along with a semantic guided discriminator. Empirically, we show consistently that CIZSL losses can improve generative ZSL models on the challenging task of generalized ZSL from a noisy text on CUB and NABirds datasets. We also show the advantage of our approach to Attribute-based ZSL on AwA2, aPY, and SUN datasets. We also show that CIZSL-v2 has improved performance compared to CIZSL-v1.
Zero-shot learning (ZSL) refers to the problem of learning to classify instances from the novel classes (unseen) that are absent in the training set (seen). Most ZSL methods infer the correlation between visual features and attributes to train the classifier for unseen classes. However, such models may have a strong bias towards seen classes during training. Meta-learning has been introduced to mitigate the basis, but meta-ZSL methods are inapplicable when tasks used for training are sampled from diverse distributions. In this regard, we propose a novel Task-aligned Generative Meta-learning model for Zero-shot learning (TGMZ). TGMZ mitigates the potentially biased training and enables meta-ZSL to accommodate real-world datasets containing diverse distributions. TGMZ incorporates an attribute-conditioned task-wise distribution alignment network that projects tasks into a unified distribution to deliver an unbiased model. Our comparisons with state-of-the-art algorithms show the improvements of 2.1%, 3.0%, 2.5%, and 7.6% achieved by TGMZ on AWA1, AWA2, CUB, and aPY datasets, respectively. TGMZ also outperforms competitors by 3.6% in generalized zero-shot learning (GZSL) setting and 7.9% in our proposed fusion-ZSL setting.
Previous human parsing models are limited to parsing humans into pre-defined classes, which is inflexible for applications that need to handle new classes. In this paper, we define a new one-shot human parsing (OSHP) task that requires parsing humans into an open set of classes defined by any test example. During training, only base classes are exposed, which only overlap with part of test-time classes. To address three main challenges in OSHP, i.e., small sizes, testing bias, and similar parts, we devise a novel End-to-end One-shot human Parsing Network (EOP-Net). Firstly, an end-to-end human parsing framework is proposed to mutually share semantic information with different granularities and help recognize the small-size human classes. Then, we devise two collaborative metric learning modules to learn representative prototypes for base classes, which can quickly adapt to unseen classes and mitigate the testing bias. Moreover, we empirically find that robust prototypes empower feature representations with higher transferability to the novel concepts, hence, we propose to adopt momentum-updated dynamic prototypes generated by gradually smoothing the training time prototypes and employ contrastive loss at the prototype level. Experiments on three popular benchmarks tailored for OSHP demonstrate that EOP-Net outperforms representative one-shot segmentation models by large margins, which serves as a strong benchmark for further research on this new task. The source code will be made publicly available.
Modern deep learning methods have achieved great success in machine learning and computer vision fields by learning a set of pre-defined datasets. Howerver, these methods perform unsatisfactorily when applied into real-world situations. The reason of this phenomenon is that learning new tasks leads the trained model quickly forget the knowledge of old tasks, which is referred to as catastrophic forgetting. Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks and ignore the problem existing in embedding networks, which are the basic networks for image retrieval, face recognition, zero-shot learning, etc. Different from traditional incremental classification networks, the semantic gap between the embedding spaces of two adjacent tasks is the main challenge for embedding networks under incremental learning setting. Thus, we propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI), which leverages zero-shot translation to estimate and compensate the semantic gap without any exemplars. Then, we try to learn a unified representation for two adjacent tasks in sequential learning process, which captures the relationships of previous classes and current classes precisely. In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks. We conduct extensive experiments on CUB-200-2011 and CIFAR100, and the experiment results prove the effectiveness of our method. The code of our method has been released.
Few-shot learning (FSL), which aims to recognise new classes by adapting the learned knowledge with extremely limited few-shot (support) examples, remains an important open problem in computer vision. Most of the existing methods for feature alignment in few-shot learning only consider image-level or spatial-level alignment while omitting the channel disparity. Our insight is that these methods would lead to poor adaptation with redundant matching, and leveraging channel-wise adjustment is the key to well adapting the learned knowledge to new classes. Therefore, in this paper, we propose to learn a dynamic alignment, which can effectively highlight both query regions and channels according to different local support information. Specifically, this is achieved by first dynamically sampling the neighbourhood of the feature position conditioned on the input few shot, based on which we further predict a both position-dependent and channel-dependent Dynamic Meta-filter. The filter is used to align the query feature with position-specific and channel-specific knowledge. Moreover, we adopt Neural Ordinary Differential Equation (ODE) to enable a more accurate control of the alignment. In such a sense our model is able to better capture fine-grained semantic context of the few-shot example and thus facilitates dynamical knowledge adaptation for few-shot learning. The resulting framework establishes the new state-of-the-arts on major few-shot visual recognition benchmarks, including miniImageNet and tieredImageNet.