Do you want to publish a course? Click here

Incremental Embedding Learning via Zero-Shot Translation

132   0   0.0 ( 0 )
 Added by Kun Wei
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Modern deep learning methods have achieved great success in machine learning and computer vision fields by learning a set of pre-defined datasets. Howerver, these methods perform unsatisfactorily when applied into real-world situations. The reason of this phenomenon is that learning new tasks leads the trained model quickly forget the knowledge of old tasks, which is referred to as catastrophic forgetting. Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks and ignore the problem existing in embedding networks, which are the basic networks for image retrieval, face recognition, zero-shot learning, etc. Different from traditional incremental classification networks, the semantic gap between the embedding spaces of two adjacent tasks is the main challenge for embedding networks under incremental learning setting. Thus, we propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI), which leverages zero-shot translation to estimate and compensate the semantic gap without any exemplars. Then, we try to learn a unified representation for two adjacent tasks in sequential learning process, which captures the relationships of previous classes and current classes precisely. In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks. We conduct extensive experiments on CUB-200-2011 and CIFAR100, and the experiment results prove the effectiveness of our method. The code of our method has been released.



rate research

Read More

Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and unseen classes, when only the labeled examples from seen classes are provided. Recent feature generation methods learn a generative model that can synthesize the missing visual features of unseen classes to mitigate the data-imbalance problem in GZSL. However, the original visual feature space is suboptimal for GZSL classification since it lacks discriminative information. To tackle this issue, we propose to integrate the generation model with the embedding model, yielding a hybrid GZSL framework. The hybrid GZSL approach maps both the real and the synthetic samples produced by the generation model into an embedding space, where we perform the final GZSL classification. Specifically, we propose a contrastive embedding (CE) for our hybrid GZSL framework. The proposed contrastive embedding can leverage not only the class-wise supervision but also the instance-wise supervision, where the latter is usually neglected by existing GZSL researches. We evaluate our proposed hybrid GZSL framework with contrastive embedding, named CE-GZSL, on five benchmark datasets. The results show that our CEGZSL method can outperform the state-of-the-arts by a significant margin on three datasets. Our codes are available on https://github.com/Hanzy1996/CE-GZSL.
Contemporary state-of-the-art approaches to Zero-Shot Learning (ZSL) train generative nets to synthesize examples conditioned on the provided metadata. Thereafter, classifiers are trained on these synthetic data in a supervised manner. In this work, we introduce Z2FSL, an end-to-end generative ZSL framework that uses such an approach as a backbone and feeds its synthesized output to a Few-Shot Learning (FSL) algorithm. The two modules are trained jointly. Z2FSL solves the ZSL problem with a FSL algorithm, reducing, in effect, ZSL to FSL. A wide class of algorithms can be integrated within our framework. Our experimental results show consistent improvement over several baselines. The proposed method, evaluated across standard benchmarks, shows state-of-the-art or competitive performance in ZSL and Generalized ZSL tasks.
91 - Yang Liu , Lei Zhou , Xiao Bai 2020
Zero-shot learning (ZSL) aims to recognize novel classes by transferring semantic knowledge from seen classes to unseen classes. Though many ZSL methods rely on a direct mapping between the visual and the semantic space, the calibration deviation and hubness problem limit the generalization capability to unseen classes. Recently emerged generative ZSL methods generate unseen image features to transform ZSL into a supervised classification problem. However, most generative models still suffer from the seen-unseen bias problem as only seen data is used for training. To address these issues, we propose a novel bidirectional embedding based generative model with a tight visual-semantic coupling constraint. We learn a unified latent space that calibrates the embedded parametric distributions of both visual and semantic spaces. Since the embedding from high-dimensional visual features comprise much non-semantic information, the alignment of visual and semantic in latent space would inevitably been deviated. Therefore, we introduce information bottleneck (IB) constraint to ZSL for the first time to preserve essential attribute information during the mapping. Specifically, we utilize the uncertainty estimation and the wake-sleep procedure to alleviate the feature noises and improve model abstraction capability. In addition, our method can be easily extended to transductive ZSL setting by generating labels for unseen images. We then introduce a robust loss to solve this label noise problem. Extensive experimental results show that our method outperforms the state-of-the-art methods in different ZSL settings on most benchmark datasets. The code will be available at https://github.com/osierboy/IBZSL.
The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones. To address this problem, we represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes. On this basis, we propose the TOpology-Preserving knowledge InCrementer (TOPIC) framework. TOPIC mitigates the forgetting of the old classes by stabilizing NGs topology and improves the representation learning for few-shot new classes by growing and adapting NG to new training samples. Comprehensive experimental results demonstrate that our proposed method significantly outperforms other state-of-the-art class-incremental learning methods on CIFAR100, miniImageNet, and CUB200 datasets.
103 - Bo Liu , Shuang Deng , Qiulei Dong 2021
This work is to tackle the problem of point cloud semantic segmentation for 3D hybrid scenes under the framework of zero-shot learning. Here by hybrid, we mean the scene consists of both seen-class and unseen-class 3D objects, a more general and realistic setting in application. To our knowledge, this problem has not been explored in the literature. To this end, we propose a network to synthesize point features for various classes of objects by leveraging the semantic features of both seen and unseen object classes, called PFNet. The proposed PFNet employs a GAN architecture to synthesize point features, where the semantic relationship between seen-class and unseen-class features is consolidated by adapting a new semantic regularizer, and the synthesized features are used to train a classifier for predicting the labels of the testing 3D scene points. Besides we also introduce two benchmarks for algorithmic evaluation by re-organizing the public S3DIS and ScanNet datasets under six different data splits. Experimental results on the two benchmarks validate our proposed method, and we hope our introduced two benchmarks and methodology could be of help for more research on this new direction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا