No Arabic abstract
Few-shot learning (FSL), which aims to recognise new classes by adapting the learned knowledge with extremely limited few-shot (support) examples, remains an important open problem in computer vision. Most of the existing methods for feature alignment in few-shot learning only consider image-level or spatial-level alignment while omitting the channel disparity. Our insight is that these methods would lead to poor adaptation with redundant matching, and leveraging channel-wise adjustment is the key to well adapting the learned knowledge to new classes. Therefore, in this paper, we propose to learn a dynamic alignment, which can effectively highlight both query regions and channels according to different local support information. Specifically, this is achieved by first dynamically sampling the neighbourhood of the feature position conditioned on the input few shot, based on which we further predict a both position-dependent and channel-dependent Dynamic Meta-filter. The filter is used to align the query feature with position-specific and channel-specific knowledge. Moreover, we adopt Neural Ordinary Differential Equation (ODE) to enable a more accurate control of the alignment. In such a sense our model is able to better capture fine-grained semantic context of the few-shot example and thus facilitates dynamical knowledge adaptation for few-shot learning. The resulting framework establishes the new state-of-the-arts on major few-shot visual recognition benchmarks, including miniImageNet and tieredImageNet.
Meta-learning has been the most common framework for few-shot learning in recent years. It learns the model from collections of few-shot classification tasks, which is believed to have a key advantage of making the training objective consistent with the testing objective. However, some recent works report that by training for whole-classification, i.e. classification on the whole label-set, it can get comparable or even better embedding than many meta-learning algorithms. The edge between these two lines of works has yet been underexplored, and the effectiveness of meta-learning in few-shot learning remains unclear. In this paper, we explore a simple process: meta-learning over a whole-classification pre-trained model on its evaluation metric. We observe this simple method achieves competitive performance to state-of-the-art methods on standard benchmarks. Our further analysis shed some light on understanding the trade-offs between the meta-learning objective and the whole-classification objective in few-shot learning.
Few-shot video classification aims to learn new video categories with only a few labeled examples, alleviating the burden of costly annotation in real-world applications. However, it is particularly challenging to learn a class-invariant spatial-temporal representation in such a setting. To address this, we propose a novel matching-based few-shot learning strategy for video sequences in this work. Our main idea is to introduce an implicit temporal alignment for a video pair, capable of estimating the similarity between them in an accurate and robust manner. Moreover, we design an effective context encoding module to incorporate spatial and feature channel context, resulting in better modeling of intra-class variations. To train our model, we develop a multi-task loss for learning video matching, leading to video features with better generalization. Extensive experimental results on two challenging benchmarks, show that our method outperforms the prior arts with a sizable margin on SomethingSomething-V2 and competitive results on Kinetics.
In this paper, we propose a new challenging task named as textbf{partial multi-view few-shot learning}, which unifies two tasks, i.e. few-shot learning and partial multi-view learning, together. Different from the traditional few-shot learning, this task aims to solve the few-shot learning problem given the incomplete multi-view prior knowledge, which conforms more with the real-world applications. However, this brings about two difficulties within this task. First, the gaps among different views can be large and hard to reduce, especially with sample scarcity. Second, due to the incomplete view information, few-shot learning becomes more challenging than the traditional one. To deal with the above issues, we propose a new textbf{Meta-alignment and Context Gated-aggregation Network} by equipping meta-alignment and context gated-aggregation with partial multi-view GNNs. Specifically, the meta-alignment effectively maps the features from different views into a more compact latent space, thereby reducing the view gaps. Moreover, the context gated-aggregation alleviates the view-missing influence by leveraging the cross-view context. Extensive experiments are conducted on the PIE and ORL dataset for evaluating our proposed method. By comparing with other few-shot learning methods, our method obtains the state-of-the-art performance especially with heavily-missing views.
To address the annotation scarcity issue in some cases of semantic segmentation, there have been a few attempts to develop the segmentation model in the few-shot learning paradigm. However, most existing methods only focus on the traditional 1-way segmentation setting (i.e., one image only contains a single object). This is far away from practical semantic segmentation tasks where the K-way setting (K>1) is usually required by performing the accurate multi-object segmentation. To deal with this issue, we formulate the few-shot semantic segmentation task as a learning-based pixel classification problem and propose a novel framework called MetaSegNet based on meta-learning. In MetaSegNet, an architecture of embedding module consisting of the global and local feature branches is developed to extract the appropriate meta-knowledge for the few-shot segmentation. Moreover, we incorporate a linear model into MetaSegNet as a base learner to directly predict the label of each pixel for the multi-object segmentation. Furthermore, our MetaSegNet can be trained by the episodic training mechanism in an end-to-end manner from scratch. Experiments on two popular semantic segmentation datasets, i.e., PASCAL VOC and COCO, reveal the effectiveness of the proposed MetaSegNet in the K-way few-shot semantic segmentation task.
Currently, the state-of-the-art methods treat few-shot semantic segmentation task as a conditional foreground-background segmentation problem, assuming each class is independent. In this paper, we introduce the concept of meta-class, which is the meta information (e.g. certain middle-level features) shareable among all classes. To explicitly learn meta-class representations in few-shot segmentation task, we propose a novel Meta-class Memory based few-shot segmentation method (MM-Net), where we introduce a set of learnable memory embeddings to memorize the meta-class information during the base class training and transfer to novel classes during the inference stage. Moreover, for the $k$-shot scenario, we propose a novel image quality measurement module to select images from the set of support images. A high-quality class prototype could be obtained with the weighted sum of support image features based on the quality measure. Experiments on both PASCAL-$5^i$ and COCO dataset shows that our proposed method is able to achieve state-of-the-art results in both 1-shot and 5-shot settings. Particularly, our proposed MM-Net achieves 37.5% mIoU on the COCO dataset in 1-shot setting, which is 5.1% higher than the previous state-of-the-art.