Do you want to publish a course? Click here

First-Passage Time Statistics on Surfaces of General Shape: Surface PDE Solvers using Generalized Moving Least Squares (GMLS)

78   0   0.0 ( 0 )
 Added by Paul Atzberger
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We develop numerical methods for computing statistics of stochastic processes on surfaces of general shape with drift-diffusion dynamics $d{X}_t = a({X}_t)dt + {b}({X}_t)d{W}_t$. We consider on a surface domain $Omega$ the statistics $u(mathbf{x}) = mathbb{E}^{mathbf{x}}left[int_0^tau g(X_t)dt right] + mathbb{E}^{mathbf{x}}left[f(X_tau)right]$ with the exit stopping time $tau = inf_t {t > 0 ; |; X_t otin Omega}$. Using Dynkins formula, we compute statistics by developing high-order Generalized Moving Least Squares (GMLS) solvers for the associated surface PDE boundary-value problems. We focus particularly on the mean First Passage Times (FPTs) given by the special case $f = 0,, g = 1$ with $u(mathbf{x}) = mathbb{E}^{mathbf{x}}left[tauright]$. We perform studies for a variety of shapes showing our methods converge with high-order accuracy both in capturing the geometry and the surface PDE solutions. We then perform studies showing how FPTs are influenced by the surface geometry, drift dynamics, and spatially dependent diffusivities.



rate research

Read More

We utilize generalized moving least squares (GMLS) to develop meshfree techniques for discretizing hydrodynamic flow problems on manifolds. We use exterior calculus to formulate incompressible hydrodynamic equations in the Stokesian regime and handle the divergence-free constraints via a generalized vector potential. This provides less coordinate-centric descriptions and enables the development of efficient numerical methods and splitting schemes for the fourth-order governing equations in terms of a system of second-order elliptic operators. Using a Hodge decomposition, we develop methods for manifolds having spherical topology. We show the methods exhibit high-order convergence rates for solving hydrodynamic flows on curved surfaces. The methods also provide general high-order approximations for the metric, curvature, and other geometric quantities of the manifold and associated exterior calculus operators. The approaches also can be utilized to develop high-order solvers for other scalar-valued and vector-valued problems on manifolds.
In this paper we consider two sources of enhancement for the meshfree Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving the accuracy of the particle approximation. Namely, we will consider shape functions constructed using: moving least-squares approximation (MLS); radial basis functions (RBF). Using MLS approximation is appealing because polynomial consistency of the particle approximation can be enforced. RBFs further appeal as they allow one to dispense with the smoothing-length -- the parameter in the SPH method which governs the number of particles within the support of the shape function. Currently, only ad hoc methods for choosing the smoothing-length exist. We ensure that any enhancement retains the conservative and meshfree nature of SPH. In doing so, we derive a new set of variationally-consistent hydrodynamic equations. Finally, we demonstrate the performance of the new equations on the Sod shock tube problem.
There are plenty of applications and analysis for time-independent elliptic partial differential equations in the literature hinting at the benefits of overtesting by using more collocation conditions than the number of basis functions. Overtesting not only reduces the problem size, but is also known to be necessary for stability and convergence of widely used unsymmetric Kansa-type strong-form collocation methods. We consider kernel-based meshfree methods, which is a method of lines with collocation and overtesting spatially, for solving parabolic partial differential equations on surfaces without parametrization. In this paper, we extend the time-independent convergence theories for overtesting techniques to the parabolic equations on smooth and closed surfaces.
This work presents the windowed space-time least-squares Petrov-Galerkin method (WST-LSPG) for model reduction of nonlinear parameterized dynamical systems. WST-LSPG is a generalization of the space-time least-squares Petrov-Galerkin method (ST-LSPG). The main drawback of ST-LSPG is that it requires solving a dense space-time system with a space-time basis that is calculated over the entire global time domain, which can be unfeasible for large-scale applications. Instead of using a temporally-global space-time trial subspace and minimizing the discrete-in-time full-order model (FOM) residual over an entire time domain, the proposed WST-LSPG approach addresses this weakness by (1) dividing the time simulation into time windows, (2) devising a unique low-dimensional space-time trial subspace for each window, and (3) minimizing the discrete-in-time space-time residual of the dynamical system over each window. This formulation yields a problem with coupling confined within each window, but sequential across the windows. To enable high-fidelity trial subspaces characterized by a relatively minimal number of basis vectors, this work proposes constructing space-time bases using tensor decompositions for each window. WST-LSPG is equipped with hyper-reduction techniques to further reduce the computational cost. Numerical experiments for the one-dimensional Burgers equation and the two-dimensional compressible Navier-Stokes equations for flow over a NACA 0012 airfoil demonstrate that WST-LSPG is superior to ST-LSPG in terms of accuracy and computational gain.
We consider best approximation problems in a nonlinear subset $mathcal{M}$ of a Banach space of functions $(mathcal{V},|bullet|)$. The norm is assumed to be a generalization of the $L^2$-norm for which only a weighted Monte Carlo estimate $|bullet|_n$ can be computed. The objective is to obtain an approximation $vinmathcal{M}$ of an unknown function $u in mathcal{V}$ by minimizing the empirical norm $|u-v|_n$. We consider this problem for general nonlinear subsets and establish error bounds for the empirical best approximation error. Our results are based on a restricted isometry property (RIP) which holds in probability and is independent of the nonlinear least squares setting. Several model classes are examined where analytical statements can be made about the RIP and the results are compared to existing sample complexity bounds from the literature. We find that for well-studied model classes our general bound is weaker but exhibits many of the same properties as these specialized bounds. Notably, we demonstrate the advantage of an optimal sampling density (as known for linear spaces) for sets of functions with sparse representations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا