Do you want to publish a course? Click here

Convergence bounds for empirical nonlinear least-squares

77   0   0.0 ( 0 )
 Added by Philipp Trunschke
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider best approximation problems in a nonlinear subset $mathcal{M}$ of a Banach space of functions $(mathcal{V},|bullet|)$. The norm is assumed to be a generalization of the $L^2$-norm for which only a weighted Monte Carlo estimate $|bullet|_n$ can be computed. The objective is to obtain an approximation $vinmathcal{M}$ of an unknown function $u in mathcal{V}$ by minimizing the empirical norm $|u-v|_n$. We consider this problem for general nonlinear subsets and establish error bounds for the empirical best approximation error. Our results are based on a restricted isometry property (RIP) which holds in probability and is independent of the nonlinear least squares setting. Several model classes are examined where analytical statements can be made about the RIP and the results are compared to existing sample complexity bounds from the literature. We find that for well-studied model classes our general bound is weaker but exhibits many of the same properties as these specialized bounds. Notably, we demonstrate the advantage of an optimal sampling density (as known for linear spaces) for sets of functions with sparse representations.



rate research

Read More

97 - Philipp Trunschke 2021
We consider the problem of approximating a function in general nonlinear subsets of $L^2$ when only a weighted Monte Carlo estimate of the $L^2$-norm can be computed. Of particular interest in this setting is the concept of sample complexity, the number of samples that are necessary to recover the best approximation. Bounds for this quantity have been derived in a previous work and depend primarily on the model class and are not influenced positively by the regularity of the sought function. This result however is only a worst-case bound and is not able to explain the remarkable performance of iterative hard thresholding algorithms that is observed in practice. We reexamine the results of the previous paper and derive a new bound that is able to utilize the regularity of the sought function. A critical analysis of our results allows us to derive a sample efficient algorithm for the model set of low-rank tensors. The viability of this algorithm is demonstrated by recovering quantities of interest for a classical high-dimensional random partial differential equation.
This work presents the windowed space-time least-squares Petrov-Galerkin method (WST-LSPG) for model reduction of nonlinear parameterized dynamical systems. WST-LSPG is a generalization of the space-time least-squares Petrov-Galerkin method (ST-LSPG). The main drawback of ST-LSPG is that it requires solving a dense space-time system with a space-time basis that is calculated over the entire global time domain, which can be unfeasible for large-scale applications. Instead of using a temporally-global space-time trial subspace and minimizing the discrete-in-time full-order model (FOM) residual over an entire time domain, the proposed WST-LSPG approach addresses this weakness by (1) dividing the time simulation into time windows, (2) devising a unique low-dimensional space-time trial subspace for each window, and (3) minimizing the discrete-in-time space-time residual of the dynamical system over each window. This formulation yields a problem with coupling confined within each window, but sequential across the windows. To enable high-fidelity trial subspaces characterized by a relatively minimal number of basis vectors, this work proposes constructing space-time bases using tensor decompositions for each window. WST-LSPG is equipped with hyper-reduction techniques to further reduce the computational cost. Numerical experiments for the one-dimensional Burgers equation and the two-dimensional compressible Navier-Stokes equations for flow over a NACA 0012 airfoil demonstrate that WST-LSPG is superior to ST-LSPG in terms of accuracy and computational gain.
In this work, we study the tensor ring decomposition and its associated numerical algorithms. We establish a sharp transition of algorithmic difficulty of the optimization problem as the bond dimension increases: On one hand, we show the existence of spurious local minima for the optimization landscape even when the tensor ring format is much over-parameterized, i.e., with bond dimension much larger than that of the true target tensor. On the other hand, when the bond dimension is further increased, we establish one-loop convergence for alternating least square algorithm for tensor ring decomposition. The theoretical results are complemented by numerical experiments for both local minimum and one-loop convergence for the alternating least square algorithm.
The alternating least squares algorithm for CP and Tucker decomposition is dominated in cost by the tensor contractions necessary to set up the quadratic optimization subproblems. We introduce a novel family of algorithms that uses perturbative corrections to the subproblems rather than recomputing the tensor contractions. This approximation is accurate when the factor matrices are changing little across iterations, which occurs when alternating least squares approaches convergence. We provide a theoretical analysis to bound the approximation error. Our numerical experiments demonstrate that the proposed pairwise perturbation algorithms are easy to control and converge to minima that are as good as alternating least squares. The experimental results show improvements of up to 3.1X with respect to state-of-the-art alternating least squares approaches for various model tensor problems and real datasets.
There are plenty of applications and analysis for time-independent elliptic partial differential equations in the literature hinting at the benefits of overtesting by using more collocation conditions than the number of basis functions. Overtesting not only reduces the problem size, but is also known to be necessary for stability and convergence of widely used unsymmetric Kansa-type strong-form collocation methods. We consider kernel-based meshfree methods, which is a method of lines with collocation and overtesting spatially, for solving parabolic partial differential equations on surfaces without parametrization. In this paper, we extend the time-independent convergence theories for overtesting techniques to the parabolic equations on smooth and closed surfaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا