Do you want to publish a course? Click here

A continuum and computational framework for viscoelastodynamics: finite deformation linear models

107   0   0.0 ( 0 )
 Added by Ju Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This work concerns the continuum basis and numerical formulation for deformable materials with viscous dissipative mechanisms. We derive a viscohyperelastic modeling framework based on fundamental thermomechanical principles. Since most large deformation problems exhibit the isochoric property, our modeling work is constructed based on the Gibbs free energy in order to develop a continuum theory using the pressure-primitive variables, which is known to be well-behaved in the incompressible limit. With a general theory presented, we focus on a family of free energies that leads to the so-called finite deformation linear model. Our derivation elucidates the origin of the evolution equations of that model, which was originally proposed heuristically. In our derivation, the thermodynamic inconsistency is clarified and rectified. We then discuss the relaxation property of the non-equilibrium stress in the thermodynamic equilibrium limit and its implication on the form of free energy. A modified version of the identical polymer chain model is then proposed, with a special case being the model proposed by G. Holzapfel and J. Simo. Based on the consistent modeling framework, a provably energy stable numerical scheme is constructed for incompressible viscohyperelasticity using inf-sup stable elements. In particular, we adopt a suite of smooth generalization of the Taylor-Hood element based on Non-Uniform Rational B-Splines (NURBS) for spatial discretization. The temporal discretization is performed via the generalized-alpha scheme. We present a suite of numerical results to corroborate the proposed numerical properties, including the nonlinear stability, robustness under large deformation, and the stress accuracy resolved by the higher-order elements.



rate research

Read More

172 - Olivier Delestre 2012
We are interested in simulating blood flow in arteries with a one dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant/ shallow water equations context) we will perform a simple finite volume scheme. We focus on conservation properties of this scheme which were not previously considered. To emphasize the necessity of this scheme, we present how a too simple numerical scheme may induce spurious flows when the basic static shape of the radius changes. On contrary, the proposed scheme is well-balanced: it preserves equilibria of Q = 0. Then examples of analytical or linearized solutions with and without viscous damping are presented to validate the calculations. The influence of abrupt change of basic radius is emphasized in the case of an aneurism.
Partial differential equation-based numerical solution frameworks for initial and boundary value problems have attained a high degree of complexity. Applied to a wide range of physics with the ultimate goal of enabling engineering solutions, these approaches encompass a spectrum of spatiotemporal discretization techniques that leverage solver technology and high performance computing. While high-fidelity solutions can be achieved using these approaches, they come at a high computational expense and complexity. Systems with billions of solution unknowns are now routine. The expense and complexity do not lend themselves to typical engineering design and decision-making, which must instead rely on reduced-order models. Here we present an approach to reduced-order modelling that builds off of recent graph theoretic work for representation, exploration, and analysis on computed states of physical systems (Banerjee et al., Comp. Meth. App. Mech. Eng., 351, 501-530, 2019). We extend a non-local calculus on finite weighted graphs to build such models by exploiting first order dynamics, polynomial expansions, and Taylor series. Some aspects of the non-local calculus related to consistency of the models are explored. Details on the numerical implementations and the software library that has been developed for non-local calculus on graphs are described. Finally, we present examples of applications to various quantities of interest in mechano-chemical systems.
In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete characterization of the medium properties of the groundwater flow problems, random variables are used to parameterize the uncertainty. As a result, solving the problem repeatedly is required to obtain statistical quantities. Besides, the medium properties are usually highly heterogeneous, which will result in a large linear system that needs to be solved. Therefore, it is intrinsically inevitable to seek a computational-efficient model reduction method to overcome the difficulty. We will explore the combination of the reduced basis method and the GMsFEM. In particular, we will use residual-driven basis functions, which are key ingredients in GMsFEM. This local-global multiscale method is more efficient than applying the GMsFEM or reduced basis method individually. We first construct parameter-independent multiscale basis functions that include both local and global information of the permeability fields, and then use these basis functions to construct several global snapshots and global basis functions for fast online computation with different parameter inputs. We provide rigorous analysis of the proposed method and extensive numerical examples to demonstrate the accuracy and efficiency of the local-global multiscale method.
We present a 3D hybrid method which combines the Finite Element Method (FEM) and the Spectral Boundary Integral method (SBIM) to model nonlinear problems in unbounded domains. The flexibility of FEM is used to model the complex, heterogeneous, and nonlinear part -- such as the dynamic rupture along a fault with near fault plasticity -- and the high accuracy and computational efficiency of SBIM is used to simulate the exterior half spaces perfectly truncating all incident waves. The exact truncation allows us to greatly reduce the domain of spatial discretization compared to a traditional FEM approach, leading to considerable savings in computational cost and memory requirements. The coupling of FEM and SBIM is achieved by the exchange of traction and displacement boundary conditions at the computationally defined boundary. The method is suited to implementation on massively parallel computers. We validate the developed method by means of a benchmark problem. Three more complex examples with a low velocity fault zone, low velocity off-fault inclusion, and interaction of multiple faults, respectively, demonstrate the capability of the hybrid scheme in solving problems of very large sizes. Finally, we discuss potential applications of the hybrid method for problems in geophysics and engineering.
307 - Longfei Li , Hangjie Ji , Qi Tang 2021
In this work, we propose and develop efficient and accurate numerical methods for solving the Kirchhoff-Love plate model in domains with complex geometries. The algorithms proposed here employ curvilinear finite-difference methods for spatial discretization of the governing PDEs on general composite overlapping grids. The coupling of different components of the composite overlapping grid is through numerical interpolations. However, interpolations introduce perturbation to the finite-difference discretization, which causes numerical instability for time-stepping schemes used to advance the resulted semi-discrete system. To address the instability, we propose to add a fourth-order hyper-dissipation to the spatially discretized system to stabilize its time integration; this additional dissipation term captures the essential upwinding effect of the original upwind scheme. The investigation of strategies for incorporating the upwind dissipation term into several time-stepping schemes (both explicit and implicit) leads to the development of four novel algorithms. For each algorithm, formulas for determining a stable time step and a sufficient dissipation coefficient on curvilinear grids are derived by performing a local Fourier analysis. Quadratic eigenvalue problems for a simplified model plate in 1D domain are considered to reveal the weak instability due to the presence of interpolating equations in the spatial discretization. This model problem is further investigated for the stabilization effects of the proposed algorithms. Carefully designed numerical experiments are carried out to validate the accuracy and stability of the proposed algorithms, followed by two benchmark problems to demonstrate the capability and efficiency of our approach for solving realistic applications. Results that concern the performance of the proposed algorithms are also presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا