Do you want to publish a course? Click here

A three-dimensional hybrid finite element -- spectral boundary integral method for modeling earthquakes in complex unbounded domains

80   0   0.0 ( 0 )
 Added by Gabriele Albertini
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a 3D hybrid method which combines the Finite Element Method (FEM) and the Spectral Boundary Integral method (SBIM) to model nonlinear problems in unbounded domains. The flexibility of FEM is used to model the complex, heterogeneous, and nonlinear part -- such as the dynamic rupture along a fault with near fault plasticity -- and the high accuracy and computational efficiency of SBIM is used to simulate the exterior half spaces perfectly truncating all incident waves. The exact truncation allows us to greatly reduce the domain of spatial discretization compared to a traditional FEM approach, leading to considerable savings in computational cost and memory requirements. The coupling of FEM and SBIM is achieved by the exchange of traction and displacement boundary conditions at the computationally defined boundary. The method is suited to implementation on massively parallel computers. We validate the developed method by means of a benchmark problem. Three more complex examples with a low velocity fault zone, low velocity off-fault inclusion, and interaction of multiple faults, respectively, demonstrate the capability of the hybrid scheme in solving problems of very large sizes. Finally, we discuss potential applications of the hybrid method for problems in geophysics and engineering.



rate research

Read More

In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete characterization of the medium properties of the groundwater flow problems, random variables are used to parameterize the uncertainty. As a result, solving the problem repeatedly is required to obtain statistical quantities. Besides, the medium properties are usually highly heterogeneous, which will result in a large linear system that needs to be solved. Therefore, it is intrinsically inevitable to seek a computational-efficient model reduction method to overcome the difficulty. We will explore the combination of the reduced basis method and the GMsFEM. In particular, we will use residual-driven basis functions, which are key ingredients in GMsFEM. This local-global multiscale method is more efficient than applying the GMsFEM or reduced basis method individually. We first construct parameter-independent multiscale basis functions that include both local and global information of the permeability fields, and then use these basis functions to construct several global snapshots and global basis functions for fast online computation with different parameter inputs. We provide rigorous analysis of the proposed method and extensive numerical examples to demonstrate the accuracy and efficiency of the local-global multiscale method.
A hybrid surface integral equation partial differential equation (SIE-PDE) formulation without the boundary condition requirement is proposed to solve the electromagnetic problems. In the proposed formulation, the computational domain is decomposed into two emph{overlapping} domains: the SIE and PDE domains. In the SIE domain, complex structures with piecewise homogeneous media, e.g., highly conductive media, are included. An equivalent model for those structures is constructed through replacing them by the background medium and introducing a surface equivalent electric current density on an enclosed boundary to represent their electromagnetic effects. The remaining computational domain and homogeneous background medium replaced domain consist of the PDE domain, in which inhomogeneous or non-isotropic media are included. Through combining the surface equivalent electric current density and the inhomogeneous Helmholtz equation, a hybrid SIE-PDE formulation is derived. Unlike other hybrid formulations, where the transmission condition is usually used, no boundary conditions are required in the proposed SIE-PDE formulation, and it is mathematically equivalent to the original physical model. Through careful construction of basis functions to expand electric fields and the equivalent current density, the discretized formulation is compatible on the interface of the SIE and PDE domain. Finally, its accuracy and efficiency are validated through two numerical examples. Results show that the proposed SIE-PDE formulation can obtain accurate results including both near and far fields, and significant performance improvements in terms of CPU time and memory consumption compared with the FEM are achieved.
233 - Long Chen , Xuehai Huang 2021
A finite element elasticity complex on tetrahedral meshes is devised. The $H^1$ conforming finite element is the smooth finite element developed by Neilan for the velocity field in a discrete Stokes complex. The symmetric div-conforming finite element is the Hu-Zhang element for stress tensors. The construction of an $H(textrm{inc})$-conforming finite element for symmetric tensors is the main focus of this paper. The key tools of the construction are the decomposition of polynomial tensor spaces and the characterization of the trace of the $textrm{inc}$ operator. The polynomial elasticity complex and Koszul elasticity complex are created to derive the decomposition of polynomial tensor spaces. The trace of the $textrm{inc}$ operator is induced from a Greens identity. Trace complexes and bubble complexes are also derived to facilitate the construction. Our construction appears to be the first $H(textrm{inc})$-conforming finite elements on tetrahedral meshes without further splits.
We explore the connection between fractional order partial differential equations in two or more spatial dimensions with boundary integral operators to develop techniques that enable one to efficiently tackle the integral fractional Laplacian. In particular, we develop techniques for the treatment of the dense stiffness matrix including the computation of the entries, the efficient assembly and storage of a sparse approximation and the efficient solution of the resulting equations. The main idea consists of generalising proven techniques for the treatment of boundary integral equations to general fractional orders. Importantly, the approximation does not make any strong assumptions on the shape of the underlying domain and does not rely on any special structure of the matrix that could be exploited by fast transforms. We demonstrate the flexibility and performance of this approach in a couple of two-dimensional numerical examples.
In this paper we discuss a hybridised method for FEM-BEM coupling. The coupling from both sides use a Nitsche type approach to couple to the trace variable. This leads to a formulation that is robust and flexible with respect to approximation spaces and can easily be combined as a building block with other hybridised methods. Energy error norm estimates and the convergence of Jacobi iterations are proved and the performance of the method is illustrated on some computational examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا