Do you want to publish a course? Click here

Invariants of linear control systems with analytic matrices and the linearizability problem

75   0   0.0 ( 0 )
 Added by Svetlana Ignatovich
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The paper continues the authors study of the linearizability problem for nonlinear control systems. In the recent work [K. Sklyar, Systems Control Lett. 134 (2019), 104572], conditions on mappability of a nonlinear control system to a preassigned linear system with analytic matrices were obtained. In the present paper we solve more general problem on linearizability conditions without indicating a target linear system. To this end, we give a description of invariants for linear non-autonomous single-input controllable systems with analytic matrices, which allow classifying such systems up to transformations of coordinates. This study leads to one problem from the theory of linear ordinary differential equations with meromorphic coefficients. As a result, we obtain a criterion for mappability of nonlinear control systems to linear control systems with analytic matrices.



rate research

Read More

103 - A. Dutta , R. Jana , A.K. Das 2021
We revisit the class of column competent matrices and study some matrix theoretic properties of this class. The local $w$-uniqueness of the solutions to the linear complementarity problem can be identified by the column competent matrices. We establish some new results on $w$-uniqueness properties in connection with column competent matrices. These results are significant in the context of matrix theory as well as algorithms in operations research. We prove some results in connection with locally $w$-uniqueness property of column competent matrices. Finally we establish a connection between column competent matrices and column adequate matrices with the help of degree theory.
The aim of this paper is to study first order Mean field games subject to a linear controlled dynamics on $mathbb R^{d}$. For this kind of problems, we define Nash equilibria (called Mean Field Games equilibria), as Borel probability measures on the space of admissible trajectories, and mild solutions as solutions associated with such equilibria. Moreover, we prove the existence and uniqueness of mild solutions and we study their regularity: we prove Holder regularity of Mean Field Games equilibria and fractional semiconcavity for the value function of the underlying optimal control problem. Finally, we address the PDEs system associated with the Mean Field Games problem and we prove that the class of mild solutions coincides with a suitable class of weak solutions.
We study linear-quadratic optimal control problems for Voterra systems, and problems that are linear-quadratic in the control but generally nonlinear in the state. In the case of linear-quadratic Volterra control, we obtain sharp necessary and sufficient conditions for optimality. For problems that are linear-quadratic in the control only, we obtain a novel form of necessary conditions in the form of double Volterra equation; we prove the solvability of such equations.
We propose a time-implicit, finite-element based space-time discretization of the necessary and sufficient optimality conditions for the stochastic linear-quadratic optimal control problem with the stochastic heat equation driven by linear noise of type $[X(t)+sigma(t)]dW(t)$, and prove optimal convergence w.r.t. both, space and time discretization parameters. In particular, we employ the stochastic Riccati equation as a proper analytical tool to handle the linear noise, and thus extend the applicability of the earlier work [16], where the error analysis was restricted to additive noise.
Linear time-varying (LTV) systems are widely used for modeling real-world dynamical systems due to their generality and simplicity. Providing stability guarantees for LTV systems is one of the central problems in control theory. However, existing approaches that guarantee stability typically lead to significantly sub-optimal cumulative control cost in online settings where only current or short-term system information is available. In this work, we propose an efficient online control algorithm, COvariance Constrained Online Linear Quadratic (COCO-LQ) control, that guarantees input-to-state stability for a large class of LTV systems while also minimizing the control cost. The proposed method incorporates a state covariance constraint into the semi-definite programming (SDP) formulation of the LQ optimal controller. We empirically demonstrate the performance of COCO-LQ in both synthetic experiments and a power system frequency control example.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا