No Arabic abstract
Linear time-varying (LTV) systems are widely used for modeling real-world dynamical systems due to their generality and simplicity. Providing stability guarantees for LTV systems is one of the central problems in control theory. However, existing approaches that guarantee stability typically lead to significantly sub-optimal cumulative control cost in online settings where only current or short-term system information is available. In this work, we propose an efficient online control algorithm, COvariance Constrained Online Linear Quadratic (COCO-LQ) control, that guarantees input-to-state stability for a large class of LTV systems while also minimizing the control cost. The proposed method incorporates a state covariance constraint into the semi-definite programming (SDP) formulation of the LQ optimal controller. We empirically demonstrate the performance of COCO-LQ in both synthetic experiments and a power system frequency control example.
We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for the future $k$ time steps. We show that when the prediction window $k$ is sufficiently large, predictive control is input-to-state stable and achieves a dynamic regret of $O(lambda^k T)$, where $lambda < 1$ is a positive constant. This is the first dynamic regret bound on the predictive control of linear time-varying systems. Under more assumptions on the terminal costs, we also show that predictive control obtains the first competitive bound for the control of linear time-varying systems: $1 + O(lambda^k)$. Our results are derived using a novel proof framework based on a perturbation bound that characterizes how a small change to the system parameters impacts the optimal trajectory.
This paper presents a new fast and robust algorithm that provides fuel-optimal impulsive control input sequences that drive a linear time-variant system to a desired state at a specified time. This algorithm is applicable to a broad class of problems where the cost is expressed as a time-varying norm-like function of the control input, enabling inclusion of complex operational constraints in the control planning problem. First, it is shown that the reachable sets for this problem have identical properties to those in prior works using constant cost functions, enabling use of existing algorithms in conjunction with newly derived contact and support functions. By reformulating the optimal control problem as a semi-infinite convex program, it is also demonstrated that the time-invariant component of the commonly studied primer vector is an outward normal vector to the reachable set at the target state. Using this formulation, a fast and robust algorithm that provides globally optimal impulsive control input sequences is proposed. The algorithm iteratively refines estimates of an outward normal vector to the reachable set at the target state and a minimal set of control input times until the optimality criteria are satisfied to within a user-specified tolerance. Next, optimal control inputs are computed by solving a quadratic program. The algorithm is validated through simulations of challenging example problems based on the recently proposed Miniaturized Distributed Occulter/Telescope small satellite mission, which demonstrate that the proposed algorithm converges several times faster than comparable algorithms in literature.
We present a method to over-approximate reachable tubes over compact time-intervals, for linear continuous-time, time-varying control systems whose initial states and inputs are subject to compact convex uncertainty. The method uses numerical approximations of transition matrices, is convergent of first order, and assumes the ability to compute with compact convex sets in finite dimension. We also present a variant that applies to the case of zonotopic uncertainties, uses only linear algebraic operations, and yields zonotopic over-approximations. The performance of the latter variant is demonstrated on an example.
The repetitive tracking task for time-varying systems (TVSs) with non-repetitive time-varying parameters, which is also called non-repetitive TVSs, is realized in this paper using iterative learning control (ILC). A machine learning (ML) based nominal model update mechanism, which utilizes the linear regression technique to update the nominal model at each ILC trial only using the current trial information, is proposed for non-repetitive TVSs in order to enhance the ILC performance. Given that the ML mechanism forces the model uncertainties to remain within the ILC robust tolerance, an ILC update law is proposed to deal with non-repetitive TVSs. How to tune parameters inside ML and ILC algorithms to achieve the desired aggregate performance is also provided. The robustness and reliability of the proposed method are verified by simulations. Comparison with current state-of-the-art demonstrates its superior control performance in terms of controlling precision. This paper broadens ILC applications from time-invariant systems to non-repetitive TVSs, adopts ML regression technique to estimate non-repetitive time-varying parameters between two ILC trials and proposes a detailed parameter tuning mechanism to achieve desired performance, which are the main contributions.
This paper deals with the convergence time analysis of a class of fixed-time stable systems with the aim to provide a new non-conservative upper bound for its settling time. Our contribution is fourfold. First, we revisit the well-known class of fixed-time stable systems, given in (Polyakov et al.,2012}, while showing the conservatism of the classical upper estimate of the settling time. Second, we provide the smallest constant that uniformly upper bounds the settling time of any trajectory of the system under consideration. Third, introducing a slight modification of the previous class of fixed-time systems, we propose a new predefined-time convergent algorithm where the least upper bound of the settling time is set a priori as a parameter of the system. At last, predefined-time controllers for first order and second order systems are introduced. Some simulation results highlight the performance of the proposed scheme in terms of settling time estimation compared to existing methods.