Do you want to publish a course? Click here

Efficient Non-Line-of-Sight Imaging from Transient Sinograms

156   0   0.0 ( 0 )
 Added by Ye Yuan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Non-line-of-sight (NLOS) imaging techniques use light that diffusely reflects off of visible surfaces (e.g., walls) to see around corners. One approach involves using pulsed lasers and ultrafast sensors to measure the travel time of multiply scattered light. Unlike existing NLOS techniques that generally require densely raster scanning points across the entirety of a relay wall, we explore a more efficient form of NLOS scanning that reduces both acquisition times and computational requirements. We propose a circular and confocal non-line-of-sight (C2NLOS) scan that involves illuminating and imaging a common point, and scanning this point in a circular path along a wall. We observe that (1) these C2NLOS measurements consist of a superposition of sinusoids, which we refer to as a transient sinogram, (2) there exists computationally efficient reconstruction procedures that transform these sinusoidal measurements into 3D positions of hidden scatterers or NLOS images of hidden objects, and (3) despite operating on an order of magnitude fewer measurements than previous approaches, these C2NLOS scans provide sufficient information about the hidden scene to solve these different NLOS imaging tasks. We show results from both simulated and real C2NLOS scans.



rate research

Read More

130 - Siyuan Shen , Zi Wang , Ping Liu 2021
We present a neural modeling framework for Non-Line-of-Sight (NLOS) imaging. Previous solutions have sought to explicitly recover the 3D geometry (e.g., as point clouds) or voxel density (e.g., within a pre-defined volume) of the hidden scene. In contrast, inspired by the recent Neural Radiance Field (NeRF) approach, we use a multi-layer perceptron (MLP) to represent the neural transient field or NeTF. However, NeTF measures the transient over spherical wavefronts rather than the radiance along lines. We therefore formulate a spherical volume NeTF reconstruction pipeline, applicable to both confocal and non-confocal setups. Compared with NeRF, NeTF samples a much sparser set of viewpoints (scanning spots) and the sampling is highly uneven. We thus introduce a Monte Carlo technique to improve the robustness in the reconstruction. Comprehensive experiments on synthetic and real datasets demonstrate NeTF provides higher quality reconstruction and preserves fine details largely missing in the state-of-the-art.
We consider the non-line-of-sight (NLOS) imaging of an object using the light reflected off a diffusive wall. The wall scatters incident light such that a lens is no longer useful to form an image. Instead, we exploit the 4D spatial coherence function to reconstruct a 2D projection of the obscured object. The approach is completely passive in the sense that no control over the light illuminating the object is assumed and is compatible with the partially coherent fields ubiquitous in both the indoor and outdoor environments. We formulate a multi-criteria convex optimization problem for reconstruction, which fuses the reflected fields intensity and spatial coherence information at different scales. Our formulation leverages established optics models of light propagation and scattering and exploits the sparsity common to many images in different bases. We also develop an algorithm based on the alternating direction method of multipliers to efficiently solve the convex program proposed. A means for analyzing the null space of the measurement matrices is provided as well as a means for weighting the contribution of individual measurements to the reconstruction. This paper holds promise to advance passive imaging in the challenging NLOS regimes in which the intensity does not necessarily retain distinguishable features and provides a framework for multi-modal information fusion for efficient scene reconstruction.
Emerging single-photon-sensitive sensors combined with advanced inverse methods to process picosecond-accurate time-stamped photon counts have given rise to unprecedented imaging capabilities. Rather than imaging photons that travel along direct paths from a source to an object and back to the detector, non-line-of-sight (NLOS) imaging approaches analyse photons {scattered from multiple surfaces that travel} along indirect light paths to estimate 3D images of scenes outside the direct line of sight of a camera, hidden by a wall or other obstacles. Here we review recent advances in the field of NLOS imaging, discussing how to see around corners and future prospects for the field.
Non-Line-of-Sight (NLOS) imaging allows to observe objects partially or fully occluded from direct view, by analyzing indirect diffuse reflections off a secondary, relay surface. Despite its many potential applications, existing methods lack practical usability due to several shared limitations, including the assumption of single scattering only, lack of occlusions, and Lambertian reflectance. We lift these limitations by transforming the NLOS problem into a virtual Line-Of-Sight (LOS) one. Since imaging information cannot be recovered from the irradiance arriving at the relay surface, we introduce the concept of the phasor field, a mathematical construct representing a fast variation in irradiance. We show that NLOS light transport can be modeled as the propagation of a phasor field wave, which can be solved accurately by the Rayleigh-Sommerfeld diffraction integral. We demonstrate for the first time NLOS reconstruction of complex scenes with strong multiply scattered and ambient light, arbitrary materials, large depth range, and occlusions. Our method handles these challenging cases without explicitly developing a light transport model. By leveraging existing fast algorithms, we outperform existing methods in terms of execution speed, computational complexity, and memory use. We believe that our approach will help unlock the potential of NLOS imaging, and the development of novel applications not restricted to lab conditions. For example, we demonstrate both refocusing and transient NLOS videos of real-world, complex scenes with large depth.
Imaging objects obscured by occluders is a significant challenge for many applications. A camera that could see around corners could help improve navigation and mapping capabilities of autonomous vehicles or make search and rescue missions more effective. Time-resolved single-photon imaging systems have recently been demonstrated to record optical information of a scene that can lead to an estimation of the shape and reflectance of objects hidden from the line of sight of a camera. However, existing non-line-of-sight (NLOS) reconstruction algorithms have been constrained in the types of light transport effects they model for the hidden scene parts. We introduce a factored NLOS light transport representation that accounts for partial occlusions and surface normals. Based on this model, we develop a factorization approach for inverse time-resolved light transport and demonstrate high-fidelity NLOS reconstructions for challenging scenes both in simulation and with an experimental NLOS imaging system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا