Do you want to publish a course? Click here

Generative Zero-shot Network Quantization

294   0   0.0 ( 0 )
 Added by Xiangyu He
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Convolutional neural networks are able to learn realistic image priors from numerous training samples in low-level image generation and restoration. We show that, for high-level image recognition tasks, we can further reconstruct realistic images of each category by leveraging intrinsic Batch Normalization (BN) statistics without any training data. Inspired by the popular VAE/GAN methods, we regard the zero-shot optimization process of synthetic images as generative modeling to match the distribution of BN statistics. The generated images serve as a calibration set for the following zero-shot network quantizations. Our method meets the needs for quantizing models based on sensitive information, textit{e.g.,} due to privacy concerns, no data is available. Extensive experiments on benchmark datasets show that, with the help of generated data, our approach consistently outperforms existing data-free quantization methods.

rate research

Read More

Zero-shot learning (ZSL) aims at understanding unseen categories with no training examples from class-level descriptions. To improve the discriminative power of ZSL, we model the visual learning process of unseen categories with inspiration from the psychology of human creativity for producing novel art. First, we propose CIZSL-v1 as a creativity inspired model for generative ZSL. We relate ZSL to human creativity by observing that ZSL is about recognizing the unseen, and creativity is about creating a likable unseen. We introduce a learning signal inspired by creativity literature that explores the unseen space with hallucinated class-descriptions and encourages careful deviation of their visual feature generations from seen classes while allowing knowledge transfer from seen to unseen classes. Second, CIZSL-v2 is proposed as an improved version of CIZSL-v1 for generative zero-shot learning. CIZSL-v2 consists of an investigation of additional inductive losses for unseen classes along with a semantic guided discriminator. Empirically, we show consistently that CIZSL losses can improve generative ZSL models on the challenging task of generalized ZSL from a noisy text on CUB and NABirds datasets. We also show the advantage of our approach to Attribute-based ZSL on AwA2, aPY, and SUN datasets. We also show that CIZSL-v2 has improved performance compared to CIZSL-v1.
111 - Yuang Liu , Wei Zhang , Jun Wang 2021
Model quantization is a promising approach to compress deep neural networks and accelerate inference, making it possible to be deployed on mobile and edge devices. To retain the high performance of full-precision models, most existing quantization methods focus on fine-tuning quantized model by assuming training datasets are accessible. However, this assumption sometimes is not satisfied in real situations due to data privacy and security issues, thereby making these quantization methods not applicable. To achieve zero-short model quantization without accessing training data, a tiny number of quantization methods adopt either post-training quantization or batch normalization statistics-guided data generation for fine-tuning. However, both of them inevitably suffer from low performance, since the former is a little too empirical and lacks training support for ultra-low precision quantization, while the latter could not fully restore the peculiarities of original data and is often low efficient for diverse data generation. To address the above issues, we propose a zero-shot adversarial quantization (ZAQ) framework, facilitating effective discrepancy estimation and knowledge transfer from a full-precision model to its quantized model. This is achieved by a novel two-level discrepancy modeling to drive a generator to synthesize informative and diverse data examples to optimize the quantized model in an adversarial learning fashion. We conduct extensive experiments on three fundamental vision tasks, demonstrating the superiority of ZAQ over the strong zero-shot baselines and validating the effectiveness of its main components. Code is available at <https://git.io/Jqc0y>.
We propose a Generative Transfer Network (GTNet) for zero shot object detection (ZSD). GTNet consists of an Object Detection Module and a Knowledge Transfer Module. The Object Detection Module can learn large-scale seen domain knowledge. The Knowledge Transfer Module leverages a feature synthesizer to generate unseen class features, which are applied to train a new classification layer for the Object Detection Module. In order to synthesize features for each unseen class with both the intra-class variance and the IoU variance, we design an IoU-Aware Generative Adversarial Network (IoUGAN) as the feature synthesizer, which can be easily integrated into GTNet. Specifically, IoUGAN consists of three unit models: Class Feature Generating Unit (CFU), Foreground Feature Generating Unit (FFU), and Background Feature Generating Unit (BFU). CFU generates unseen features with the intra-class variance conditioned on the class semantic embeddings. FFU and BFU add the IoU variance to the results of CFU, yielding class-specific foreground and background features, respectively. We evaluate our method on three public datasets and the results demonstrate that our method performs favorably against the state-of-the-art ZSD approaches.
70 - Feihong Shen , Jun Liu , Ping Hu 2021
zero-shot learning is an essential part of computer vision. As a classical downstream task, zero-shot semantic segmentation has been studied because of its applicant value. One of the popular zero-shot semantic segmentation methods is based on the generative model Most new proposed works added structures on the same architecture to enhance this model. However, we found that, from the view of causal inference, the result of the original model has been influenced by spurious statistical relationships. Thus the performance of the prediction shows severe bias. In this work, we consider counterfactual methods to avoid the confounder in the original model. Based on this method, we proposed a new framework for zero-shot semantic segmentation. Our model is compared with baseline models on two real-world datasets, Pascal-VOC and Pascal-Context. The experiment results show proposed models can surpass previous confounded models and can still make use of additional structures to improve the performance. We also design a simple structure based on Graph Convolutional Networks (GCN) in this work.
Unlike conventional zero-shot classification, zero-shot semantic segmentation predicts a class label at the pixel level instead of the image level. When solving zero-shot semantic segmentation problems, the need for pixel-level prediction with surrounding context motivates us to incorporate spatial information using positional encoding. We improve standard positional encoding by introducing the concept of Relative Positional Encoding, which integrates spatial information at the feature level and can handle arbitrary image sizes. Furthermore, while self-training is widely used in zero-shot semantic segmentation to generate pseudo-labels, we propose a new knowledge-distillation-inspired self-training strategy, namely Annealed Self-Training, which can automatically assign different importance to pseudo-labels to improve performance. We systematically study the proposed Relative Positional Encoding and Annealed Self-Training in a comprehensive experimental evaluation, and our empirical results confirm the effectiveness of our method on three benchmark datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا