Do you want to publish a course? Click here

SIGN: Spatial-information Incorporated Generative Network for Generalized Zero-shot Semantic Segmentation

290   0   0.0 ( 0 )
 Added by Jiaxin Cheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Unlike conventional zero-shot classification, zero-shot semantic segmentation predicts a class label at the pixel level instead of the image level. When solving zero-shot semantic segmentation problems, the need for pixel-level prediction with surrounding context motivates us to incorporate spatial information using positional encoding. We improve standard positional encoding by introducing the concept of Relative Positional Encoding, which integrates spatial information at the feature level and can handle arbitrary image sizes. Furthermore, while self-training is widely used in zero-shot semantic segmentation to generate pseudo-labels, we propose a new knowledge-distillation-inspired self-training strategy, namely Annealed Self-Training, which can automatically assign different importance to pseudo-labels to improve performance. We systematically study the proposed Relative Positional Encoding and Annealed Self-Training in a comprehensive experimental evaluation, and our empirical results confirm the effectiveness of our method on three benchmark datasets.



rate research

Read More

70 - Feihong Shen , Jun Liu , Ping Hu 2021
zero-shot learning is an essential part of computer vision. As a classical downstream task, zero-shot semantic segmentation has been studied because of its applicant value. One of the popular zero-shot semantic segmentation methods is based on the generative model Most new proposed works added structures on the same architecture to enhance this model. However, we found that, from the view of causal inference, the result of the original model has been influenced by spurious statistical relationships. Thus the performance of the prediction shows severe bias. In this work, we consider counterfactual methods to avoid the confounder in the original model. Based on this method, we proposed a new framework for zero-shot semantic segmentation. Our model is compared with baseline models on two real-world datasets, Pascal-VOC and Pascal-Context. The experiment results show proposed models can surpass previous confounded models and can still make use of additional structures to improve the performance. We also design a simple structure based on Graph Convolutional Networks (GCN) in this work.
Semantic segmentation models are limited in their ability to scale to large numbers of object classes. In this paper, we introduce the new task of zero-shot semantic segmentation: learning pixel-wise classifiers for never-seen object categories with zero training examples. To this end, we present a novel architecture, ZS3Net, combining a deep visual segmentation model with an approach to generate visual representations from semantic word embeddings. By this way, ZS3Net addresses pixel classification tasks where both seen and unseen categories are faced at test time (so called generalized zero-shot classification). Performance is further improved by a self-training step that relies on automatic pseudo-labeling of pixels from unseen classes. On the two standard segmentation datasets, Pascal-VOC and Pascal-Context, we propose zero-shot benchmarks and set competitive baselines. For complex scenes as ones in the Pascal-Context dataset, we extend our approach by using a graph-context encoding to fully leverage spatial context priors coming from class-wise segmentation maps.
General purpose semantic segmentation relies on a backbone CNN network to extract discriminative features that help classify each image pixel into a seen object class (ie., the object classes available during training) or a background class. Zero-shot semantic segmentation is a challenging task that requires a computer vision model to identify image pixels belonging to an object class which it has never seen before. Equipping a general purpose semantic segmentation model to separate image pixels of unseen classes from the background remains an open challenge. Some recent models have approached this problem by fine-tuning the final pixel classification layer of a semantic segmentation model for a Zero-Shot setting, but struggle to learn discriminative features due to the lack of supervision. We propose a recursive training scheme to supervise the retraining of a semantic segmentation model for a zero-shot setting using a pseudo-feature representation. To this end, we propose a Zero-Shot Maximum Mean Discrepancy (ZS-MMD) loss that weighs high confidence outputs of the pixel classification layer as a pseudo-feature representation, and feeds it back to the generator. By closing-the-loop on the generator end, we provide supervision during retraining that in turn helps the model learn a more discriminative feature representation for unseen classes. We show that using our recursive training and ZS-MMD loss, our proposed model achieves state-of-the-art performance on the Pascal-VOC 2012 dataset and Pascal-Context dataset.
Convolutional neural networks are able to learn realistic image priors from numerous training samples in low-level image generation and restoration. We show that, for high-level image recognition tasks, we can further reconstruct realistic images of each category by leveraging intrinsic Batch Normalization (BN) statistics without any training data. Inspired by the popular VAE/GAN methods, we regard the zero-shot optimization process of synthetic images as generative modeling to match the distribution of BN statistics. The generated images serve as a calibration set for the following zero-shot network quantizations. Our method meets the needs for quantizing models based on sensitive information, textit{e.g.,} due to privacy concerns, no data is available. Extensive experiments on benchmark datasets show that, with the help of generated data, our approach consistently outperforms existing data-free quantization methods.
127 - Mengyu Liu , Hujun Yin 2021
The spatial attention mechanism captures long-range dependencies by aggregating global contextual information to each query location, which is beneficial for semantic segmentation. In this paper, we present a sparse spatial attention network (SSANet) to improve the efficiency of the spatial attention mechanism without sacrificing the performance. Specifically, a sparse non-local (SNL) block is proposed to sample a subset of key and value elements for each query element to capture long-range relations adaptively and generate a sparse affinity matrix to aggregate contextual information efficiently. Experimental results show that the proposed approach outperforms other context aggregation methods and achieves state-of-the-art performance on the Cityscapes, PASCAL Context and ADE20K datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا