Do you want to publish a course? Click here

GTNet: Generative Transfer Network for Zero-Shot Object Detection

171   0   0.0 ( 0 )
 Added by Shizhen Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose a Generative Transfer Network (GTNet) for zero shot object detection (ZSD). GTNet consists of an Object Detection Module and a Knowledge Transfer Module. The Object Detection Module can learn large-scale seen domain knowledge. The Knowledge Transfer Module leverages a feature synthesizer to generate unseen class features, which are applied to train a new classification layer for the Object Detection Module. In order to synthesize features for each unseen class with both the intra-class variance and the IoU variance, we design an IoU-Aware Generative Adversarial Network (IoUGAN) as the feature synthesizer, which can be easily integrated into GTNet. Specifically, IoUGAN consists of three unit models: Class Feature Generating Unit (CFU), Foreground Feature Generating Unit (FFU), and Background Feature Generating Unit (BFU). CFU generates unseen features with the intra-class variance conditioned on the class semantic embeddings. FFU and BFU add the IoU variance to the results of CFU, yielding class-specific foreground and background features, respectively. We evaluate our method on three public datasets and the results demonstrate that our method performs favorably against the state-of-the-art ZSD approaches.

rate research

Read More

Zero-shot object detection (ZSD), the task that extends conventional detection models to detecting objects from unseen categories, has emerged as a new challenge in computer vision. Most existing approaches tackle the ZSD task with a strict mapping-transfer strategy, which may lead to suboptimal ZSD results: 1) the learning process of those models ignores the available unseen class information, and thus can be easily biased towards the seen categories; 2) the original visual feature space is not well-structured and lack of discriminative information. To address these issues, we develop a novel Semantics-Guided Contrastive Network for ZSD, named ContrastZSD, a detection framework that first brings contrastive learning mechanism into the realm of zero-shot detection. Particularly, ContrastZSD incorporates two semantics-guided contrastive learning subnets that contrast between region-category and region-region pairs respectively. The pairwise contrastive tasks take advantage of additional supervision signals derived from both ground truth label and pre-defined class similarity distribution. Under the guidance of those explicit semantic supervision, the model can learn more knowledge about unseen categories to avoid the bias problem to seen concepts, while optimizing the data structure of visual features to be more discriminative for better visual-semantic alignment. Extensive experiments are conducted on two popular benchmarks for ZSD, i.e., PASCAL VOC and MS COCO. Results show that our method outperforms the previous state-of-the-art on both ZSD and generalized ZSD tasks.
Convolutional neural networks are able to learn realistic image priors from numerous training samples in low-level image generation and restoration. We show that, for high-level image recognition tasks, we can further reconstruct realistic images of each category by leveraging intrinsic Batch Normalization (BN) statistics without any training data. Inspired by the popular VAE/GAN methods, we regard the zero-shot optimization process of synthetic images as generative modeling to match the distribution of BN statistics. The generated images serve as a calibration set for the following zero-shot network quantizations. Our method meets the needs for quantizing models based on sensitive information, textit{e.g.,} due to privacy concerns, no data is available. Extensive experiments on benchmark datasets show that, with the help of generated data, our approach consistently outperforms existing data-free quantization methods.
Zero-shot detection (ZSD) is crucial to large-scale object detection with the aim of simultaneously localizing and recognizing unseen objects. There remain several challenges for ZSD, including reducing the ambiguity between background and unseen objects as well as improving the alignment between visual and semantic concept. In this work, we propose a novel framework named Background Learnable Cascade (BLC) to improve ZSD performance. The major contributions for BLC are as follows: (i) we propose a multi-stage cascade structure named Cascade Semantic R-CNN to progressively refine the alignment between visual and semantic of ZSD; (ii) we develop the semantic information flow structure and directly add it between each stage in Cascade Semantic RCNN to further improve the semantic feature learning; (iii) we propose the background learnable region proposal network (BLRPN) to learn an appropriate word vector for background class and use this learned vector in Cascade Semantic R CNN, this design makes Background Learnable and reduces the confusion between background and unseen classes. Our extensive experiments show BLC obtains significantly performance improvements for MS-COCO over state-of-the-art methods.
Conventional methods for object detection usually require substantial amounts of training data and annotated bounding boxes. If there are only a few training data and annotations, the object detectors easily overfit and fail to generalize. It exposes the practical weakness of the object detectors. On the other hand, human can easily master new reasoning rules with only a few demonstrations using previously learned knowledge. In this paper, we introduce a few-shot object detection via knowledge transfer, which aims to detect objects from a few training examples. Central to our method is prototypical knowledge transfer with an attached meta-learner. The meta-learner takes support set images that include the few examples of the novel categories and base categories, and predicts prototypes that represent each category as a vector. Then, the prototypes reweight each RoI (Region-of-Interest) feature vector from a query image to remodels R-CNN predictor heads. To facilitate the remodeling process, we predict the prototypes under a graph structure, which propagates information of the correlated base categories to the novel categories with explicit guidance of prior knowledge that represents correlations among categories. Extensive experiments on the PASCAL VOC dataset verifies the effectiveness of the proposed method.
The current advances in object detection depend on large-scale datasets to get good performance. However, there may not always be sufficient samples in many scenarios, which leads to the research on few-shot detection as well as its extreme variation one-shot detection. In this paper, the one-shot detection has been formulated as a conditional probability problem. With this insight, a novel one-shot conditional object detection (OSCD) framework, referred as Comparison Network (ComparisonNet), has been proposed. Specifically, query and target image features are extracted through a Siamese network as mapped metrics of marginal probabilities. A two-stage detector for OSCD is introduced to compare the extracted query and target features with the learnable metric to approach the optimized non-linear conditional probability. Once trained, ComparisonNet can detect objects of both seen and unseen classes without further training, which also has the advantages including class-agnostic, training-free for unseen classes, and without catastrophic forgetting. Experiments show that the proposed approach achieves state-of-the-art performance on the proposed datasets of Fashion-MNIST and PASCAL VOC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا