No Arabic abstract
We report on the design, fabrication, and characterization of compact tunable yttrium iron garnet (YIG) based RF resonators based on $mu$m-sized spin-wave cavities. Inductive antennas with both ladder and meander configurations were used as transducers between spin waves and RF signals. The excitation of ferromagnetic resonance and standing spin waves in the YIG cavities led to sharp resonances with quality factors up to 350. The observed spectra were in excellent agreement with a model based on the spin-wave dispersion relations in YIG, showing a high magnetic field tunability of about 29 MHz/mT.
This paper introduces the first tunable ferroelectric capacitor (FeCAP) based unreleased RF MEMS resonator, integrated seamlessly in Texas Instruments 130nm Ferroelectric RAM (FeRAM) technology. An array of FeCAPs in this complementary metal-oxide-semiconductor (CMOS) technologys back-end-of-line (BEOL) process were used to define the acoustic resonance cavity as well as the electromechanical transducers. To achieve high quality factor (Q) of the resonator, acoustic waveguiding for vertical confinement within the CMOS stack is studied and optimized. Additional design considerations are discussed to obtain lateral confinement and suppression of spurious modes. An FeCAP resonator is demonstrated with fundamental resonance at 703 MHz and Q of 1012. This gives a frequency quality factor product fQ = 7.11$times$10$^1$$^1$ which is 1.6$times$ higher than the most state-of-the-art Pb(Zr,Ti)O$_3$ (PZT) resonators. Due to the ferroelectric characteristics of the FeCAPs, transduction of the resonator can be switched on and off by adjusting the electric polarization. In this case, the resonance can be turned off completely at $pm$0.3V corresponding to the coercive voltage of the constituent FeCAP transducers. These novel switchable resonators may have promising applications in on-chip timing, ad-hoc radio front ends, and chip-scale sensors.
As an alternative angular momentum carrier, magnons or spin waves can be utilized to encode information and breed magnon-based circuits with ultralow power consumption and non-Boolean data processing capability. In order to construct such a circuit, it is indispensable to design some electronic components with both long magnon decay and coherence length and effective control over magnon transport. Here we show that an all-insulating magnon junctions composed by a magnetic insulator (MI1)/antiferromagnetic insulator (AFI)/magnetic insulator (MI2) sandwich (Y3Fe5O12/NiO/Y3Fe5O12) can completely turn a thermogradient-induced magnon current on or off as the two Y3Fe5O12 layers are aligned parallel or anti-parallel. The magnon decay length in NiO is about 3.5~4.5 nm between 100 K and 200 K for thermally activated magnons. The insulating magnon valve (magnon junction), as a basic building block, possibly shed light on the naissance of efficient magnon-based circuits, including non-Boolean logic, memory, diode, transistors, magnon waveguide and switches with sizable on-off ratios.
Developing compact, low-dissipation, cryogenic-compatible microwave electronics is essential for scaling up low-temperature quantum computing systems. In this paper, we demonstrate an ultra-compact microwave directional forward coupler based on high-impedance slow-wave superconducting-nanowire transmission lines. The coupling section of the fabricated device has a footprint of $416,mathrm{mu m^2}$. At 4.753 GHz, the input signal couples equally to the through port and forward-coupling port (50:50) at $-6.7,mathrm{dB}$ with $-13.5,mathrm{dB}$ isolation. The coupling ratio can be controlled with DC bias current or temperature by exploiting the dependence of the kinetic inductance on these quantities. The material and fabrication-process are suitable for direct integration with superconducting circuits, providing a practical solution to the signal distribution bottlenecks in developing large-scale quantum computers.
The ever-increasing demand for high speed and large bandwidth has made photonic systems a leading candidate for the next generation of telecommunication and radar technologies. The photonic platform enables high performance while maintaining a small footprint and provides a natural interface with fiber optics for signal transmission. However, producing sharp, narrow-band filters that are competitive with RF components has remained challenging. In this paper, we demonstrate all-silicon RF-photonic multi-pole filters with $sim100times$ higher spectral resolution than previously possible in silicon photonics. This enhanced performance is achieved utilizing engineered Brillouin interactions to access long-lived phonons, greatly extending the available coherence times in silicon. This Brillouin-based optomechanical system enables ultra-narrow (3.5 MHz) multi-pole response that can be tuned over a wide ($sim10$ GHz) spectral band. We accomplish this in an all-silicon optomechanical waveguide system, using CMOS compatible fabrication techniques. In addition to bringing greatly enhanced performance to silicon photonics, we demonstrate reliability and robustness, necessary to transition silicon-based optomechanical technologies from the scientific bench-top to high-impact field-deployable technologies.
A novel photonics-based RF reception approach is proposed as a competitive solution to meet the current challenges of photonic-based approaches and to realize high performances at the same time. The proposed approach adopts the superheterodyne configuration by a combination manner of electronic techniques and photonic techniques, including the ultrawideband generation of optical LO, the two-stage photonic superheterodyne frequency conversion and the real-time IF compensation. An engineering prototype has been developed and its performance has been evaluated in the laboratory environment. The experiment results preliminarily verify the feasibility of the proposed approach and its engineering potential. The typical performances are as follows: 0.1 GHz~ 45GHz operation spectrum range (>40 GHz), 900 MHz instantaneous bandwidth, 101 dBHz2/3 SFDR and 130 dBHz LDR, image rejections of ~80 dB for 1st frequency conversion and >90 dB for 2nd frequency conversion.