No Arabic abstract
Current quantum simulation experiments are starting to explore non-equilibrium many-body dynamics in previously inaccessible regimes in terms of system sizes and time scales. Therefore, the question emerges which observables are best suited to study the dynamics in such quantum many-body systems. Using machine learning techniques, we investigate the dynamics and in particular the thermalization behavior of an interacting quantum system which undergoes a dynamical phase transition from an ergodic to a many-body localized phase. A neural network is trained to distinguish non-equilibrium from thermal equilibrium data, and the network performance serves as a probe for the thermalization behavior of the system. We test our methods with experimental snapshots of ultracold atoms taken with a quantum gas microscope. Our results provide a path to analyze highly-entangled large-scale quantum states for system sizes where numerical calculations of conventional observables become challenging.
Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of complex many-body systems. We implement machine learning to analyze and classify such snapshots of ultracold atoms. Specifically, we compare the data from an experimental realization of the two-dimensional Fermi-Hubbard model to two theoretical approaches: a doped quantum spin liquid state of resonating valence bond type, and the geometric string theory, describing a state with hidden spin order. This approach considers all available information without a potential bias towards one particular theory by the choice of an observable and can therefore select the theory which is more predictive in general. Up to intermediate doping values, our algorithm tends to classify experimental snapshots as geometric-string-like, as compared to the doped spin liquid. Our results demonstrate the potential for machine learning in processing the wealth of data obtained through quantum gas microscopy for new physical insights.
Deep quantum neural networks may provide a promising way to achieve quantum learning advantage with noisy intermediate scale quantum devices. Here, we use deep quantum feedforward neural networks capable of universal quantum computation to represent the mixed states for open quantum many-body systems and introduce a variational method with quantum derivatives to solve the master equation for dynamics and stationary states. Owning to the special structure of the quantum networks, this approach enjoys a number of notable features, including the absence of barren plateaus, efficient quantum analogue of the backpropagation algorithm, resource-saving reuse of hidden qubits, general applicability independent of dimensionality and entanglement properties, as well as the convenient implementation of symmetries. As proof-of-principle demonstrations, we apply this approach to both one-dimensional transverse field Ising and two-dimensional $J_1-J_2$ models with dissipation, and show that it can efficiently capture their dynamics and stationary states with a desired accuracy.
Distinguishing the dynamics of an Anderson insulator from a Many-Body Localized (MBL) phase is an experimentally challenging task. In this work, we propose a method based on machine learning techniques to analyze experimental snapshot data to separate the two phases. We show how to train $3D$ convolutional neural networks (CNNs) using space-time Fock-state snapshots, allowing us to obtain dynamic information about the system. We benchmark our method on a paradigmatic model showing MBL ($t-V$ model with quenched disorder), where we obtain a classification accuracy of $approx 80 %$ between an Anderson insulator and an MBL phase. We underline the importance of providing temporal information to the CNNs and we show that CNNs learn the crucial difference between an Anderson localized and an MBL phase, namely the difference in the propagation of quantum correlations. Particularly, we show that the misclassified MBL samples are characterized by an unusually slow propagation of quantum correlations, and thus the CNNs label them wrongly as Anderson localized. Finally, we apply our method to the case with quasi-periodic potential, known as the Aubry-Andre model (AA model). We find that the CNNs have more difficulties in separating the two phases. We show that these difficulties are due to the fact that the MBL phase of the AA model is characterized by a slower information propagation for numerically accessible system sizes.
We study a quantum spin-1/2 chain that is dual to the canonical problem of non-equilibrium Kawasaki dynamics of a classical Ising chain coupled to a thermal bath. The Hamiltonian is obtained for the general disordered case with non-uniform Ising couplings. The quantum spin chain (dubbed Ising-Kawasaki) is stoquastic, and depends on the Ising couplings normalized by the baths temperature. We give its exact ground states. Proceeding with uniform couplings, we study the one- and two-magnon excitations. Solutions for the latter are derived via a Bethe Ansatz scheme. In the antiferromagnetic regime, the two-magnon branch states show intricate behavior, especially regarding their hybridization with the continuum. We find that that the gapless chain hosts multiple dynamics at low energy as seen through the presence of multiple dynamical critical exponents. Finally, we analyze the full energy level spacing distribution as a function of the Ising coupling. We conclude that the system is non-integrable for generic parameters, or equivalently, that the corresponding non-equilibrium classical dynamics are ergodic.
Neural networks are a promising tool for simulating quantum many body systems. Recently, it has been shown that neural network-based models describe quantum many body systems more accurately when they are constrained to have the correct symmetry properties. In this paper, we show how to create maximally expressive models for quantum states with specific symmetry properties by drawing on literature from the machine learning community. We implement group equivariant convolutional networks (G-CNN) cite{cohen2016group}, and demonstrate that performance improvements can be achieved without increasing memory use. We show that G-CNNs achieve very good accuracy for Heisenberg quantum spin models in both ordered and spin liquid regimes, and improve the ground state accuracy on the triangular lattice over other variational Monte-Carlo methods.