Do you want to publish a course? Click here

Distinguishing an Anderson Insulator from a Many-Body Localized phase through space-time snapshots with Neural Networks

76   0   0.0 ( 0 )
 Added by Florian Kotthoff
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Distinguishing the dynamics of an Anderson insulator from a Many-Body Localized (MBL) phase is an experimentally challenging task. In this work, we propose a method based on machine learning techniques to analyze experimental snapshot data to separate the two phases. We show how to train $3D$ convolutional neural networks (CNNs) using space-time Fock-state snapshots, allowing us to obtain dynamic information about the system. We benchmark our method on a paradigmatic model showing MBL ($t-V$ model with quenched disorder), where we obtain a classification accuracy of $approx 80 %$ between an Anderson insulator and an MBL phase. We underline the importance of providing temporal information to the CNNs and we show that CNNs learn the crucial difference between an Anderson localized and an MBL phase, namely the difference in the propagation of quantum correlations. Particularly, we show that the misclassified MBL samples are characterized by an unusually slow propagation of quantum correlations, and thus the CNNs label them wrongly as Anderson localized. Finally, we apply our method to the case with quasi-periodic potential, known as the Aubry-Andre model (AA model). We find that the CNNs have more difficulties in separating the two phases. We show that these difficulties are due to the fact that the MBL phase of the AA model is characterized by a slower information propagation for numerically accessible system sizes.



rate research

Read More

Many-body localization (MBL) is an example of a dynamical phase of matter that avoids thermalization. While the MBL phase is robust to weak local perturbations, the fate of an MBL system coupled to a thermalizing quantum system that represents a heat bath is an open question that is actively investigated theoretically and experimentally. In this work we consider the stability of an Anderson insulator with a finite density of particles interacting with a single mobile impurity -- a small quantum bath. We give perturbative arguments that support the stability of localization in the strong interaction regime. Large scale tensor network simulations of dynamics are employed to corroborate the presence of the localized phase and give quantitative predictions in the thermodynamic limit. We develop a phenomenological description of the dynamics in the strong interaction regime, and demonstrate that the impurity effectively turns the Anderson insulator into an MBL phase, giving rise to non-trivial entanglement dynamics well captured by our phenomenology.
Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state, a spin-excitation remains localized only up to a finite delocalization time, which depends exponentially on the size of the system and the strength of the electric field. This suggests that bona fide Stark many-body localization occurs only in the thermodynamic limit. We also demonstrate that the transient localization in a finite system and for electric fields stronger than the interaction strength can be well approximated by a Magnus expansion up-to times which grow with the electric field strength.
The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the behavior of the Loschmidt echo in the many body localized phase, which is characterized by emergent local integrals of motion, and provides a generic example of non-ergodic dynamics. We demonstrate that the fluctuations of the Loschmidt echo decay as a power law in time in the many-body localized phase, in contrast to the exponential decay in few-body ergodic systems. We consider the spin-echo generalization of the Loschmidt echo, and argue that the corresponding correlation function saturates to a finite value in localized systems. Slow, power-law decay of fluctuations of such spin-echo-type overlap is related to the operator spreading and is present only in the many-body localized phase, but not in a non-interacting Anderson insulator. While most of the previously considered probes of dephasing dynamics could be understood by approximating physical spin operators with local integrals of motion, the Loschmidt echo and its generalizations crucially depend on the full expansion of the physical operators via local integrals of motion operators, as well as operators which flip local integrals of motion. Hence, these probes allow to get insights into the relation between physical operators and local integrals of motion, and access the operator spreading in the many-body localized phase.
In this work, we investigate how the critical driving amplitude at the Floquet MBL-to-ergodic phase transition differs between smooth and non-smooth driving over a wide range of driving frequencies. To this end, we study numerically a disordered spin-1/2 chain which is periodically driven by a sine or a square-wave drive, respectively. In both cases, the critical driving amplitude increases monotonically with the frequency, and at large frequencies, it is identical for the two drives in the appropriate normalization. However, at low and intermediate frequencies the critical amplitude of the square-wave drive depends strongly on the frequency, while the one of the cosine drive is almost constant in a wide frequency range. By analyzing the density of drive-induced resonance in a Fourier space perspective, we conclude that this difference is due to resonances induced by the higher harmonics which are present (absent) in the Fourier spectrum of the square-wave (sine) drive. Furthermore, we suggest a numerically efficient method to estimate the frequency dependence of the critical driving amplitudes for different drives, based on measuring the density of drive-induced resonances.
We show how the thermodynamic properties of large many-body localized systems can be studied using quantum Monte Carlo simulations. To this end we devise a heuristic way of constructing local integrals of motion of very high quality, which are added to the Hamiltonian in conjunction with Lagrange multipliers. The ground state simulation of the shifted Hamiltonian corresponds to a high-energy state of the original Hamiltonian in case of exactly known local integrals of motion. We can show that the inevitable mixing between eigenstates as a consequence of non-perfect integrals of motion is weak enough such that the characteristics of many-body localized systems are not averaged out in our approach, unlike the standard ensembles of statistical mechanics. Our method paves the way to study higher dimensions and indicates that a full many-body localized phase in 2d, where (nearly) all eigenstates are localized, is likely to exist.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا