Do you want to publish a course? Click here

Solving Quantum Master Equations with Deep Quantum Neural Networks

92   0   0.0 ( 0 )
 Added by Zidu Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Deep quantum neural networks may provide a promising way to achieve quantum learning advantage with noisy intermediate scale quantum devices. Here, we use deep quantum feedforward neural networks capable of universal quantum computation to represent the mixed states for open quantum many-body systems and introduce a variational method with quantum derivatives to solve the master equation for dynamics and stationary states. Owning to the special structure of the quantum networks, this approach enjoys a number of notable features, including the absence of barren plateaus, efficient quantum analogue of the backpropagation algorithm, resource-saving reuse of hidden qubits, general applicability independent of dimensionality and entanglement properties, as well as the convenient implementation of symmetries. As proof-of-principle demonstrations, we apply this approach to both one-dimensional transverse field Ising and two-dimensional $J_1-J_2$ models with dissipation, and show that it can efficiently capture their dynamics and stationary states with a desired accuracy.



rate research

Read More

Neural networks are a promising tool for simulating quantum many body systems. Recently, it has been shown that neural network-based models describe quantum many body systems more accurately when they are constrained to have the correct symmetry properties. In this paper, we show how to create maximally expressive models for quantum states with specific symmetry properties by drawing on literature from the machine learning community. We implement group equivariant convolutional networks (G-CNN) cite{cohen2016group}, and demonstrate that performance improvements can be achieved without increasing memory use. We show that G-CNNs achieve very good accuracy for Heisenberg quantum spin models in both ordered and spin liquid regimes, and improve the ground state accuracy on the triangular lattice over other variational Monte-Carlo methods.
We propose a quantum algorithm to solve systems of nonlinear differential equations. Using a quantum feature map encoding, we define functions as expectation values of parametrized quantum circuits. We use automatic differentiation to represent function derivatives in an analytical form as differentiable quantum circuits (DQCs), thus avoiding inaccurate finite difference procedures for calculating gradients. We describe a hybrid quantum-classical workflow where DQCs are trained to satisfy differential equations and specified boundary conditions. As a particular example setting, we show how this approach can implement a spectral method for solving differential equations in a high-dimensional feature space. From a technical perspective, we design a Chebyshev quantum feature map that offers a powerful basis set of fitting polynomials and possesses rich expressivity. We simulate the algorithm to solve an instance of Navier-Stokes equations, and compute density, temperature and velocity profiles for the fluid flow in a convergent-divergent nozzle.
The measurement precision of modern quantum simulators is intrinsically constrained by the limited set of measurements that can be efficiently implemented on hardware. This fundamental limitation is particularly severe for quantum algorithms where complex quantum observables are to be precisely evaluated. To achieve precise estimates with current methods, prohibitively large amounts of sample statistics are required in experiments. Here, we propose to reduce the measurement overhead by integrating artificial neural networks with quantum simulation platforms. We show that unsupervised learning of single-qubit data allows the trained networks to accommodate measurements of complex observables, otherwise costly using traditional post-processing techniques. The effectiveness of this hybrid measurement protocol is demonstrated for quantum chemistry Hamiltonians using both synthetic and experimental data. Neural-network estimators attain high-precision measurements with a drastic reduction in the amount of sample statistics, without requiring additional quantum resources.
86 - A. Bohrdt , S. Kim , A. Lukin 2020
Current quantum simulation experiments are starting to explore non-equilibrium many-body dynamics in previously inaccessible regimes in terms of system sizes and time scales. Therefore, the question emerges which observables are best suited to study the dynamics in such quantum many-body systems. Using machine learning techniques, we investigate the dynamics and in particular the thermalization behavior of an interacting quantum system which undergoes a dynamical phase transition from an ergodic to a many-body localized phase. A neural network is trained to distinguish non-equilibrium from thermal equilibrium data, and the network performance serves as a probe for the thermalization behavior of the system. We test our methods with experimental snapshots of ultracold atoms taken with a quantum gas microscope. Our results provide a path to analyze highly-entangled large-scale quantum states for system sizes where numerical calculations of conventional observables become challenging.
We show how random unitary dynamics arise from the coupling of an open quantum system to a static environment. Subsequently, we derive a master equation for the reduced system random unitary dynamics and study three specific cases: commuting system and interaction Hamiltonians, the short-time limit, and the Markov approximation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا