Do you want to publish a course? Click here

Communication-Aware Collaborative Learning

108   0   0.0 ( 0 )
 Added by Shelby Heinecke
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Algorithms for noiseless collaborative PAC learning have been analyzed and optimized in recent years with respect to sample complexity. In this paper, we study collaborative PAC learning with the goal of reducing communication cost at essentially no penalty to the sample complexity. We develop communication efficient collaborative PAC learning algorithms using distributed boosting. We then consider the communication cost of collaborative learning in the presence of classification noise. As an intermediate step, we show how collaborative PAC learning algorithms can be adapted to handle classification noise. With this insight, we develop communication efficient algorithms for collaborative PAC learning robust to classification noise.



rate research

Read More

Collaborative learning has successfully applied knowledge transfer to guide a pool of small student networks towards robust local minima. However, previous approaches typically struggle with drastically aggravated student homogenization when the number of students rises. In this paper, we propose Collaborative Group Learning, an efficient framework that aims to diversify the feature representation and conduct an effective regularization. Intuitively, similar to the human group study mechanism, we induce students to learn and exchange different parts of course knowledge as collaborative groups. First, each student is established by randomly routing on a modular neural network, which facilitates flexible knowledge communication between students due to random levels of representation sharing and branching. Second, to resist the student homogenization, students first compose diverse feature sets by exploiting the inductive bias from sub-sets of training data, and then aggregate and distill different complementary knowledge by imitating a random sub-group of students at each time step. Overall, the above mechanisms are beneficial for maximizing the student population to further improve the model generalization without sacrificing computational efficiency. Empirical evaluations on both image and text tasks indicate that our method significantly outperforms various state-of-the-art collaborative approaches whilst enhancing computational efficiency.
117 - Yang Liu , Yan Kang , Xinwei Zhang 2019
We introduce a collaborative learning framework allowing multiple parties having different sets of attributes about the same user to jointly build models without exposing their raw data or model parameters. In particular, we propose a Federated Stochastic Block Coordinate Descent (FedBCD) algorithm, in which each party conducts multiple local updates before each communication to effectively reduce the number of communication rounds among parties, a principal bottleneck for collaborative learning problems. We analyze theoretically the impact of the number of local updates and show that when the batch size, sample size, and the local iterations are selected appropriately, within $T$ iterations, the algorithm performs $mathcal{O}(sqrt{T})$ communication rounds and achieves some $mathcal{O}(1/sqrt{T})$ accuracy (measured by the average of the gradient norm squared). The approach is supported by our empirical evaluations on a variety of tasks and datasets, demonstrating advantages over stochastic gradient descent (SGD) approaches.
Meta-learning has proven to be successful for few-shot learning across the regression, classification, and reinforcement learning paradigms. Recent approaches have adopted Bayesian interpretations to improve gradient-based meta-learners by quantifying the uncertainty of the post-adaptation estimates. Most of these works almost completely ignore the latent relationship between the covariate distribution $(p(x))$ of a task and the corresponding conditional distribution $p(y|x)$. In this paper, we identify the need to explicitly model the meta-distribution over the task covariates in a hierarchical Bayesian framework. We begin by introducing a graphical model that leverages the samples from the marginal $p(x)$ to better infer the posterior over the optimal parameters of the conditional distribution $(p(y|x))$ for each task. Based on this model we propose a computationally feasible meta-learning algorithm by introducing meaningful relaxations in our final objective. We demonstrate the gains of our algorithm over initialization based meta-learning baselines on popular classification benchmarks. Finally, to understand the potential benefit of modeling task covariates we further evaluate our method on a synthetic regression dataset.
226 - Bingcong Li , Tianyi Chen , 2018
To accommodate heterogeneous tasks in Internet of Things (IoT), a new communication and computing paradigm termed mobile edge computing emerges that extends computing services from the cloud to edge, but at the same time exposes new challenges on security. The present paper studies online security-aware edge computing under jamming attacks. Leveraging online learning tools, novel algorithms abbreviated as SAVE-S and SAVE-A are developed to cope with the stochastic and adversarial forms of jamming, respectively. Without utilizing extra resources such as spectrum and transmission power to evade jamming attacks, SAVE-S and SAVE-A can select the most reliable server to offload computing tasks with minimal privacy and security concerns. It is analytically established that without any prior information on future jamming and server security risks, the proposed schemes can achieve ${cal O}big(sqrt{T}big)$ regret. Information sharing among devices can accelerate the security-aware computing tasks. Incorporating the information shared by other devices, SAVE-S and SAVE-A offer impressive improvements on the sublinear regret, which is guaranteed by what is termed value of cooperation. Effectiveness of the proposed schemes is tested on both synthetic and real datasets.
Existing approaches to federated learning suffer from a communication bottleneck as well as convergence issues due to sparse client participation. In this paper we introduce a novel algorithm, called FetchSGD, to overcome these challenges. FetchSGD compresses model updates using a Count Sketch, and then takes advantage of the mergeability of sketches to combine model updates from many workers. A key insight in the design of FetchSGD is that, because the Count Sketch is linear, momentum and error accumulation can both be carried out within the sketch. This allows the algorithm to move momentum and error accumulation from clients to the central aggregator, overcoming the challenges of sparse client participation while still achieving high compression rates and good convergence. We prove that FetchSGD has favorable convergence guarantees, and we demonstrate its empirical effectiveness by training two residual networks and a transformer model.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا