Do you want to publish a course? Click here

Secure Mobile Edge Computing in IoT via Collaborative Online Learning

227   0   0.0 ( 0 )
 Added by Bingcong Li
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

To accommodate heterogeneous tasks in Internet of Things (IoT), a new communication and computing paradigm termed mobile edge computing emerges that extends computing services from the cloud to edge, but at the same time exposes new challenges on security. The present paper studies online security-aware edge computing under jamming attacks. Leveraging online learning tools, novel algorithms abbreviated as SAVE-S and SAVE-A are developed to cope with the stochastic and adversarial forms of jamming, respectively. Without utilizing extra resources such as spectrum and transmission power to evade jamming attacks, SAVE-S and SAVE-A can select the most reliable server to offload computing tasks with minimal privacy and security concerns. It is analytically established that without any prior information on future jamming and server security risks, the proposed schemes can achieve ${cal O}big(sqrt{T}big)$ regret. Information sharing among devices can accelerate the security-aware computing tasks. Incorporating the information shared by other devices, SAVE-S and SAVE-A offer impressive improvements on the sublinear regret, which is guaranteed by what is termed value of cooperation. Effectiveness of the proposed schemes is tested on both synthetic and real datasets.

rate research

Read More

Predictive analytics in Mobile Edge Computing (MEC) based Internet of Things (IoT) is becoming a high demand in many real-world applications. A prediction problem in an MEC-based IoT environment typically corresponds to a collection of tasks with each task solved in a specific MEC environment based on the data accumulated locally, which can be regarded as a Multi-task Learning (MTL) problem. However, the heterogeneity of the data (non-IIDness) accumulated across different MEC environments challenges the application of general MTL techniques in such a setting. Federated MTL (FMTL) has recently emerged as an attempt to address this issue. Besides FMTL, there exists another powerful but under-exploited distributed machine learning technique, called Network Lasso (NL), which is inherently related to FMTL but has its own unique features. In this paper, we made an in-depth evaluation and comparison of these two techniques on three distinct IoT datasets representing real-world application scenarios. Experimental results revealed that NL outperformed FMTL in MEC-based IoT environments in terms of both accuracy and computational efficiency.
228 - Liya Xu , Mingzhu Ge , Weili Wu 2020
Mining in the blockchain requires high computing power to solve the hash puzzle for example proof-of-work puzzle. It takes high cost to achieve the calculation of this problem in devices of IOT, especially the mobile devices of IOT. It consequently restricts the application of blockchain in mobile environment. However, edge computing can be utilized to solve the problem for insufficient computing power of mobile devices in IOT. Edge servers can recruit many mobile devices to contribute computing power together to mining and share the reward of mining with these recruited mobile devices. In this paper, we propose an incentivizing mechanism based on edge computing for mobile blockchain. We design a two-stage Stackelberg Game to jointly optimize the reward of edge servers and recruited mobile devices. The edge server as the leader sets the expected fee for the recruited mobile devices in Stage I. The mobile device as a follower provides its computing power to mine according to the expected fee in Stage. It proves that this game can obtain a uniqueness Nash Equilibrium solution under the same or different expected fee. In the simulation experiment, we obtain a result curve of the profit for the edge server with the different ratio between the computing power from the edge server and mobile devices. In addition, the proposed scheme has been compared with the MDG scheme for the profit of the edge server. The experimental results show that the profit of the proposed scheme is more than that of the MDG scheme under the same total computing power.
202 - Zhen Qin , Hai Wang , Yuben Qu 2021
By pushing computation, cache, and network control to the edge, mobile edge computing (MEC) is expected to play a leading role in fifth generation (5G) and future sixth generation (6G). Nevertheless, facing ubiquitous fast-growing computational demands, it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments (UEs). To address this issue, we propose an air-ground collaborative MEC (AGC-MEC) architecture in this article. The proposed AGC-MEC integrates all potentially available MEC servers within air and ground in the envisioned 6G, by a variety of collaborative ways to provide computation services at their best for UEs. Firstly, we introduce the AGC-MEC architecture and elaborate three typical use cases. Then, we discuss four main challenges in the AGC-MEC as well as their potential solutions. Next, we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy. Finally, we highlight several potential research directions of the AGC-MEC.
Mobile Edge Computing (MEC) is an emerging paradigm that provides computing, storage, and networking resources within the edge of the mobile Radio Access Network (RAN). MEC servers are deployed on generic computing platform within the RAN and allow for delay-sensitive and context-aware applications to be executed in close proximity to the end users. This approach alleviates the backhaul and core network and is crucial for enabling low-latency, high-bandwidth, and agile mobile services. This article envisages a real-time, context-aware collaboration framework that lies at the edge of the RAN, constituted of MEC servers and mobile devices, and that amalgamates the heterogeneous resources at the edge. Specifically, we introduce and study three strong use cases ranging from mobile-edge orchestration, collaborative caching and processing and multi-layer interference cancellation. We demonstrate the promising benefits of these approaches in facilitating the evolution to 5G networks. Finally, we discuss the key technical challenges and open-research issues that need to be addressed in order to make an efficient integration of MEC into 5G ecosystem.
Recently, Mobile-Edge Computing (MEC) has arisen as an emerging paradigm that extends cloud-computing capabilities to the edge of the Radio Access Network (RAN) by deploying MEC servers right at the Base Stations (BSs). In this paper, we envision a collaborative joint caching and processing strategy for on-demand video streaming in MEC networks. Our design aims at enhancing the widely used Adaptive BitRate (ABR) streaming technology, where multiple bitra

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا