Do you want to publish a course? Click here

LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories

89   0   0.0 ( 0 )
 Added by Austin Schneider
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples.



rate research

Read More

The extraction of neutrino mixing parameters from accelerator-based neutrino oscillation experiments relies on proper modeling of neutrino-nucleus scattering processes using neutrino-interaction event generators. Experimental tests of these generators are difficult due to the broad range of neutrino energies produced in accelerator-based beams and the low statistics of current experiments. Here we overcome these difficulties by exploiting the similarity of neutrino and electron interactions with nuclei to test neutrino event generators using high-precision inclusive electron scattering data. To this end, we revised the electron-scattering mode of the GENIE event generator ($e$-GENIE) to include electron-nucleus bremsstrahlung radiation effects and to use, when relevant, the exact same physics models and model parameters, as the standard neutrino-scattering version. We also implemented new models for quasielastic (QE) scattering and meson exchange currents (MEC) based on the theory-inspired SuSAv2 approach. Comparing the new $e$-GENIE predictions with inclusive electron scattering data, we find an overall adequate description of the data in the QE- and MEC-dominated lower energy transfer regime, especially when using the SuSAv2 models. Higher energy transfer-interactions, which are dominated by resonance production, are still not well modeled by $e$-GENIE.
A neutrino community workshop was held at Fermilab in Jan 2020, with the aim of developing an implementation plan for a set of common interfaces to Neutrino Event Generators. This white paper summarizes discussions at the workshop and the resulting plan.
64 - Bei Zhou , John F. Beacom 2019
Detecting TeV--PeV cosmic neutrinos provides crucial tests of neutrino physics and astrophysics. The statistics of IceCube and the larger proposed IceCube-Gen2 demand calculations of neutrino-nucleus interactions subdominant to deep-inelastic scattering, which is mediated by weak-boson couplings to nuclei. The largest such interactions are W-boson and trident production, which are mediated instead through photon couplings to nuclei. In a companion paper [1], we make the most comprehensive and precise calculations of those interactions at high energies. In this paper, we study their phenomenological consequences. We find that: (1) These interactions are dominated by the production of on-shell W-bosons, which carry most of the neutrino energy, (2) The cross section on water/iron can be as large as 7.5%/14% that of charged-current deep-inelastic scattering, much larger than the quoted uncertainty on the latter, (3) Attenuation in Earth is increased by as much as 15%, (4) W-boson production on nuclei exceeds that through the Glashow resonance on electrons by a factor of $simeq$ 20 for the best-fit IceCube spectrum, (5) The primary signals are showers that will significantly affect the detection rate in IceCube-Gen2; a small fraction of events give unique signatures that may be detected sooner.
Physics event generators are essential components of the data analysis software chain of high energy physics experiments, and important consumers of their CPU resources. Improving the software performance of these packages on modern hardware architectures, such as those deployed at HPC centers, is essential in view of the upcoming HL-LHC physics programme. In this paper, we describe an ongoing activity to reengineer the Madgraph5_aMC@NLO physics event generator, primarily to port it and allow its efficient execution on GPUs, but also to modernize it and optimize its performance on vector CPUs. We describe the motivation, engineering process and software architecture design of our developments, as well as the current challenges and future directions for this project. This paper is based on our submission to vCHEP2021 in March 2021,complemented with a few preliminary results that we presented during the conference. Further details and updated results will be given in later publications.
495 - T. Leitner , U. Mosel 2010
We apply the GiBUU model to questions relevant for current and future neutrino long-baseline experiments, we address in particular the relevance of charged-current reactions for neutrino disappearance experiments. A correct identification of charged-current quasielastic (CCQE) events - which is the signal channel in oscillation experiments - is relevant for the neutrino energy reconstruction and thus for the oscillation result. We show that about 20% of the quasielastic cross section is misidentified in present-day experiments and has to be corrected for by means of event generators. Furthermore, we show that also a significant part of 1pi+ (> 40%) events is misidentified as CCQE mainly caused by the pion absorption in the nucleus. We also discuss the dependence of both of these numbers on experimental detection thresholds. We further investigate the influence of final-state interactions on the neutrino energy reconstruction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا