Do you want to publish a course? Click here

Neutrino-nucleus scattering reexamined: Quasielastic scattering and pion production entanglement and implications for neutrino energy reconstruction

498   0   0.0 ( 0 )
 Added by Tina Leitner
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We apply the GiBUU model to questions relevant for current and future neutrino long-baseline experiments, we address in particular the relevance of charged-current reactions for neutrino disappearance experiments. A correct identification of charged-current quasielastic (CCQE) events - which is the signal channel in oscillation experiments - is relevant for the neutrino energy reconstruction and thus for the oscillation result. We show that about 20% of the quasielastic cross section is misidentified in present-day experiments and has to be corrected for by means of event generators. Furthermore, we show that also a significant part of 1pi+ (> 40%) events is misidentified as CCQE mainly caused by the pion absorption in the nucleus. We also discuss the dependence of both of these numbers on experimental detection thresholds. We further investigate the influence of final-state interactions on the neutrino energy reconstruction.



rate research

Read More

279 - S. X. Nakamura 2009
We study coherent pion production in neutrino-nucleus scattering in the energy region relevant to neutrino oscillation experiments of current interest. Our approach is based on a combined use of the Sato-Lee model of electroweak pion production on a nucleon and the Delta-hole model of pion-nucleus reactions. Thus we develop a model which describes pion-nucleus scattering and electroweak coherent pion production in a unified manner. Numerical calculations are carried out for the case of the 12C target. All the free parameters in our model are fixed by fitting to both total and elastic differential cross sections for pi-12C scattering. Then we demonstrate the reliability of our approach by confronting our prediction for the coherent pion photo-productions with data. Finally, we calculate total and differential cross sections for neutrino-induced coherent pion production, and some of the results are (will be) compared with the recent (forthcoming) data from K2K, SciBooNE and MiniBooNE. We also study effect of the non-locality of the Delta-propagation in the nucleus, and compare the elementary amplitudes used in different microscopic calculations.
We study the sensitivity of neutral-current neutrino-nucleus scattering to the strange-quark content of the axial-vector form factor of the nucleon. A model-independent formalism for this reaction is developed in terms of eight nuclear structure functions. Taking advantage of the insensitivity of the ratio of proton $( u, u p)$ to neutron $( u, u n)$ yields to distortion effects, we compute all structure functions in a relativistic plane wave impulse approximation approach. Further, by employing the notion of a bound-state nucleon propagator, closed-form, analytic expressions for all nuclear-structure functions are developed in terms of an accurately calibrated relativistic mean-field model. Using a strange-quark contribution to the axial-vector form factor of $g_{A}^{s}=-0.19$, a significant enhancement in the proton-to-neutron yields is observed relative to one with $g_{A}^{s}=0$.
It is pointed out that so far all theoretical estimates of coherent pion production off nuclei induced by neutrinos rely on the local approximation well known in photonuclear physics. The effects of dropping this approximation are discussed. It is found that in a plane wave approximation for the pion the local approximation overestimates the coherent neutrino-induced pion production on nuclei.
143 - S. X. Nakamura 2009
We study coherent pion production in neutrino-nucleus scattering in the energy region relevant to the recent neutrino oscillation experiments. Our approach is based on the combined use of the Sato-Lee model and the Delta-hole model. Our initial numerical results are compared with the recent data from K2K and SciBooNE.
We present a model for electron- and neutrino-scattering off nucleons and nuclei focussing on the quasielastic and resonance region. The lepton-nucleon reaction is described within a relativistic formalism that includes, besides quasielastic scattering, the excitation of 13 N* and Delta resonances and a non-resonant single-pion background. Recent electron-scattering data is used for the state-of-the-art parametrizations of the vector form factors; the axial couplings are determined via PCAC and, in the case of the Delta resonance, the axial form factor is refitted using neutrino-scattering data. Scattering off nuclei is treated within the GiBUU framework that takes into account various nuclear effects: the local density approximation for the nuclear ground state, mean-field potentials and in-medium spectral functions. Results for inclusive scattering off Oxygen are presented and, in the case of electron-induced reactions, compared to experimental data and other models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا