No Arabic abstract
The Milky Way hosts on average a few supernova explosions per century, yet in the past millennium only five supernovae have been identified confidently in the historical record. This deficit of naked-eye supernovae is at least partly due to dust extinction in the Galactic plane. We explore this effect quantitatively, developing a formalism for the supernova probability distribution, accounting for dust and for the observers flux limit. We then construct a fiducial axisymmetric model for the supernova and dust densities, featuring an exponential dependence on galactocentric radius and height, with core-collapse events in a thin disk and Type Ia events including a thick disk component. When no flux limit is applied, our model predicts supernovae are intrinsically concentrated in the Galactic plane, with Type Ia events extending to higher latitudes reflecting their thick disk component. We then apply a flux limit and include dust effects, to predict the sky distribution of historical supernovae. We use well-observed supernovae as light-curve templates, and introduce naked-eye discovery criteria. The resulting sky distributions are strikingly inconsistent with the locations of confident historical supernovae, none of which lie near our models central peaks. Indeed, SN 1054 lies off the plane almost exactly in the anticenter, and SN 1181 is in the 2nd Galactic quadrant. We discuss possible explanations for these discrepancies. We calculate the percentage of all supernovae bright enough for historical discovery: $simeq 13%$ of core-collapse and $simeq 33%$ of Type Ia events. Using these and the confident historical supernovae, we estimate the intrinsic Galactic supernova rates, finding general agreement with other methods. Finally, we urge searches for supernovae in historical records from civilizations in the southern hemisphere.
We present an open-access database which includes a synthetic catalog of black holes in the Milky Way. To calculate evolution of single and binary stars we used updated population synthesis code StarTrack. We applied a new model of star formation history and chemical evolution of Galactic disk, bulge and halo synthesized from observational and theoretical data. We find that at the current moment Milky Way (disk+bulge+halo) contains about 1.2 x 10^8 single black holes with average mass of about 14 Msun and 9.3 x 10^6 BHs in binary systems with average mass of 19 Msun. We present basic statistical properties of BH populations such as distributions of single and binary BH masses, velocities, orbital parameters or numbers of BH binary systems in different evolutionary configurations. We find that the most massive BHs are formed in mergers of binary systems, such as BH-MS, BH+He, BH-BH. The metallicity of stellar population has a significant impact on the final BH mass due to the stellar winds. Therefore the most massive single BH in our simulation, 113 Msun, originates from a merger of a helium star and a black hole in a low metallicity stellar environment in Galactic halo. The most massive BH in binary system is 60 Msun and was also formed in Galactic halo. We constrain that only 0.006% of total Galactic halo mass (including dark matter) could be hidden in the form of stellar origin BHs which are not detectable by current observational surveys. Galactic binary BHs are minority (10% of all Galactic BHs) and most of them are in BH-BH systems. The current Galactic merger rates for two considered common envelope models which are: 3-81 Myr^-1 for BH-BH, 1-9 Myr^-1, for BH-NS and 14-59 Myr^-1 for NS-NS systems. Data files are available at https://bhc.syntheticuniverse.org/.
The stellar population of the Milky Way bulge is thoroughly studied, with a plethora of measurements from virtually the full suite of instruments available to astronomers. It is thus perhaps surprising that alongside well-established results lies some substantial uncertainty in its star-formation history. Cosmological models predict the bulge to host the Galaxys oldest stars for [Fe/H]$lesssim -1$, and this is demonstrated by RR Lyrae stars and globular cluster observations. There is consensus that bulge stars with [Fe/H]$lesssim0$ are older than $t approx10$ Gyr. However, at super-solar metallicity, there is a substantial unresolved discrepancy. Data from spectroscopic measurements of the main-sequence turnoff and subgiant branch, the abundances of asymptotic giant branch stars, the period distribution of Mira variables, the chemistry and central-star masses of planetary nebulae, all suggest a substantial intermediate-age population ($t approx 3$ Gyr). This is in conflict with predictions from cosmologically-motivated chemical evolution models and photometric studies of the main-sequence turnoff region, which both suggest virtually no stars younger than $t approx 8$ Gyr. A possible resolution to this conflict is enhanced helium-enrichment, as this would shift nearly all of the age estimates in the direction of decreasing discrepancy. Enhanced helium-enrichment is also arguably suggested by measurements of the red giant branch bump and the R-parameter.
Over the course of its history, the Milky Way has ingested multiple smaller satellite galaxies. While these accreted stellar populations can be forensically identified as kinematically distinct structures within the Galaxy, it is difficult in general to precisely date the age at which any one merger occurred. Recent results have revealed a population of stars that were accreted via the collision of a dwarf galaxy, called textit{Gaia}-Enceladus, leading to a substantial pollution of the chemical and dynamical properties of the Milky Way. Here, we identify the very bright, naked-eye star $ u$,Indi as a probe of the age of the early in situ population of the Galaxy. We combine asteroseismic, spectroscopic, astrometric, and kinematic observations to show that this metal-poor, alpha-element-rich star was an indigenous member of the halo, and we measure its age to be $11.0 pm 0.7$ (stat) $pm 0.8$ (sys)$,rm Gyr$. The star bears hallmarks consistent with it having been kinematically heated by the textit{Gaia}-Enceladus collision. Its age implies that the earliest the merger could have begun was 11.6 and 13.2 Gyr ago at 68 and 95% confidence, respectively. Input from computations based on hierarchical cosmological models tightens (i.e. reduces) slightly the above limits.
Milky Way dwarf satellites are unique objects that encode the early structure formation and therefore represent a window into the high redshift Universe. So far, their study was conducted using electromagnetic waves only. The future Laser Interferometer Space Antenna (LISA) has the potential to reveal Milky Way satellites in gravitational waves emitted by double white dwarf (DWD) binaries. We investigate gravitational wave (GW) signals detectable by LISA as a possible tool for the identification and characterisation of the Milky Way satellites. We use the binary population synthesis technique to model the population of DWDs in dwarf satellites and we assess the impact on the number of LISA detections when making changes to the total stellar mass, distance, star formation history and metallicity of satellites. We calibrate predictions for the known Milky Way satellites on their observed properties. We find that DWDs emitting at frequencies $gtrsim 3,$mHz can be detected in Milky Way satellites at large galactocentric distances. The number of these high frequency DWDs per satellite primarily depends on its mass, distance, age and star formation history, and only mildly depends on the other assumptions regarding their evolution such as metallicity. We find that dwarf galaxies with $M_star>10^6,$M$_{odot}$ can host detectable LISA sources with a number of detections that scales linearly with the satellites mass. We forecast that out of the known satellites, Sagittarius, Fornax, Sculptor and the Magellanic Clouds can be detected with LISA. As an all-sky survey that does not suffer from contamination and dust extinction, LISA will provide observations of the Milky Way and dwarf satellites galaxies valuable for Galactic archaeology and near-field cosmology.
Supernovae (SNe) should both frequently have a binary companion at death and form significant amounts of dust. This implies that any binary companion must lie at the center of an expanding dust cloud and the variable obscuration of the companion as the SN remnant (SNR) expands will both unambiguously mark the companion and allow the measurement of the dust content through absorption rather than emission for decades after the explosion. However, sufficiently hot and luminous companions can suppress dust formation by rapidly photo-ionizing the condensible species in the ejecta. This provides a means of reconciling the Type IIb SNe Cas A, which lacks a luminous companion and formed a significant amount of dust (Md > 0.1 Msun), with the Type IIb SNe 1993J and 2011dh, both of which appear to have a luminous companion and to have formed a negligible amount of dust (Md < 0.001 Msun). The Crab and SN 1987A are consistent with this picture, as both lack a luminous companion and formed significant amounts of dust. An unrecognized dependence of dust formation on the properties of binary companions may help to explain why the evidence for dust formation in SNe appears so contradictory.