Do you want to publish a course? Click here

Dust Formation and the Binary Companions of Supernovae

138   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English
 Authors C.S. Kochanek




Ask ChatGPT about the research

Supernovae (SNe) should both frequently have a binary companion at death and form significant amounts of dust. This implies that any binary companion must lie at the center of an expanding dust cloud and the variable obscuration of the companion as the SN remnant (SNR) expands will both unambiguously mark the companion and allow the measurement of the dust content through absorption rather than emission for decades after the explosion. However, sufficiently hot and luminous companions can suppress dust formation by rapidly photo-ionizing the condensible species in the ejecta. This provides a means of reconciling the Type IIb SNe Cas A, which lacks a luminous companion and formed a significant amount of dust (Md > 0.1 Msun), with the Type IIb SNe 1993J and 2011dh, both of which appear to have a luminous companion and to have formed a negligible amount of dust (Md < 0.001 Msun). The Crab and SN 1987A are consistent with this picture, as both lack a luminous companion and formed significant amounts of dust. An unrecognized dependence of dust formation on the properties of binary companions may help to explain why the evidence for dust formation in SNe appears so contradictory.



rate research

Read More

121 - D. Boubert 2017
We search for runaway former companions of the progenitors of nearby Galactic core-collapse supernova remnants (SNRs) in the Tycho-Gaia astrometric solution (TGAS). We look for candidates for a sample of ten SNRs with distances less than $2;mathrm{kpc}$, taking astrometry and $G$ magnitude from TGAS and $B,V$ magnitudes from the AAVSO Photometric All-Sky Survey (APASS). A simple method of tracking back stars and finding the closest point to the SNR centre is shown to have several failings when ranking candidates. In particular, it neglects our expectation that massive stars preferentially have massive companions. We evolve a grid of binary stars to exploit these covariances in the distribution of runaway star properties in colour - magnitude - ejection velocity space. We construct an analytic model which predicts the properties of a runaway star, in which the model parameters are the properties of the progenitor binary and the properties of the SNR. Using nested sampling we calculate the Bayesian evidence for each candidate to be the runaway and simultaneously constrain the properties of that runaway and of the SNR itself. We identify four likely runaway companions of the Cygnus Loop, HB 21, S147 and the Monoceros Loop. HD 37424 has previously been suggested as the companion of S147, however the other three stars are new candidates. The favoured companion of HB 21 is the Be star BD+50 3188 whose emission-line features could be explained by pre-supernova mass transfer from the primary. There is a small probability that the $2;mathrm{M}_{odot}$ candidate runaway TYC 2688-1556-1 associated with the Cygnus Loop is a hypervelocity star. If the Monoceros Loop is related to the on-going star formation in the Mon OB2 association, the progenitor of the Monoceros Loop is required to be more massive than $40;mathrm{M}_{odot}$ which is in tension with the posterior for HD 261393.
225 - S. Geier , T. Kupfer , U. Heber 2016
Hot subdwarf stars (sdO/Bs) are evolved core helium-burning stars with very thin hydrogen envelopes, which can be formed by common envelope ejection. Close sdB binaries with massive white dwarf (WD) companions are potential progenitors of thermonuclear supernovae type Ia (SN~Ia). We discovered such a progenitor candidate as well as a candidate for a surviving companion star, which escapes from the Galaxy. More candidates for both types of objects have been found by crossmatching known sdB stars with proper motion and light curve catalogues. We found 72 sdO/B candidates with high Galactic restframe velocities, 12 of them might be unbound to our Galaxy. Furthermore, we discovered the second-most compact sdB+WD binary known. However, due to the low mass of the WD companion, it is unlikely to be a SN,Ia progenitor.
167 - M. Fraser , D. Boubert 2018
We use Gaia Data Release 2 to search for possible surviving binary companions to three of the best studied historical Milky Way core-collapse supernovae. Consistent with previous work, we find there to be no plausible binary companion to either the Crab or Cas A supernovae. For the first time, we present a systematic search for a former companion to the Vela supernova, and rule out essentially any surviving luminous ($>L_odot$) companion. Based on parallax and proper motion, we identify a faint source (Star A; Gaia Source ID 5521955992667891584) which is kinematically consistent with being a former binary companion to the Vela SN progenitor. However, the inferred absolute magnitude of this source is extremely faint, raising the possibility that it may in fact be a background interloper. In addition, we derive a new distance ($3.37^{+4.04}_{-0.97}$ kpc) to the Crab SN based on the Gaia parallax measurements, which is significantly further than the 2 kpc distance typically adopted. Finally, we demonstrate that Gaia can be used to measure the secular decline in the luminosity of the Crab pulsar, and provide a new test of pulsar models.
The circumstellar (CS) environment is key to understanding progenitors of type Ia supernovae (SNe Ia), as well as the origin of a peculiar extinction property toward SNe Ia for cosmological application. It has been suggested that multiple scatterings of SN photons by CS dust may explain the non-standard reddening law. In this paper, we examine the effect of re-emission of SN photons by CS dust in the infrared (IR) wavelength regime. This effect allows the observed IR light curves to be used as a constraint on the position/size and the amount of CS dust. The method was applied to observed near-infrared (NIR) SN Ia samples; meaningful upper limits on the CS dust mass were derived even under conservative assumptions. We thereby clarify a difficulty associated with the CS dust scattering model as a general explanation for the peculiar reddening law, while it may still apply to a sub-sample of highly reddened SNe Ia. For SNe Ia in general, the environment at the interstellar scale appears to be responsible for the non-standard extinction law. Furthermore, deeper limits can be obtained using the standard nature of SN Ia NIR light curves. In this application, an upper limit of Mdot ~10^{-8}-10^{-7} Msun/yr (for the wind velocity of ~10 km/s) is obtained for a mass loss rate from a progenitor up to ~0.01 pc, and Mdot ~10^{-7}-10^{-6} Msun/yr up to ~0.1 pc.
We present $^{56}$Ni mass estimates for 110 normal Type II supernovae (SNe II), computed here from their luminosity in the radioactive tail. This sample consists of SNe from the literature, with at least three photometric measurements in a single optical band within 95-320 d since explosion. To convert apparent magnitudes to bolometric ones, we compute bolometric corrections (BCs) using 15 SNe in our sample having optical and near-IR photometry, along with three sets of SN II atmosphere models to account for the unobserved flux. We find that the $I$- and $i$-band are best suited to estimate luminosities through the BC technique. The $^{56}$Ni mass distribution of our SN sample has a minimum and maximum of 0.005 and 0.177 M$_{odot}$, respectively, and a selection-bias-corrected average of $0.037pm0.005$ M$_{odot}$. Using the latter value together with iron isotope ratios of two sets of core-collapse (CC) nucleosynthesis models, we calculate a mean iron yield of $0.040pm0.005$ M$_{odot}$ for normal SNe II. Combining this result with recent mean $^{56}$Ni mass measurements for other CC SN subtypes, we estimate a mean iron yield $<$0.068 M$_{odot}$ for CC SNe, where the contribution of normal SNe II is $>$36 per cent. We also find that the empirical relation between $^{56}$Ni mass and steepness parameter ($S$) is poorly suited to measure the $^{56}$Ni mass of normal SNe II. Instead, we present a correlation between $^{56}$Ni mass, $S$, and absolute magnitude at 50 d since explosion. The latter allows to measure $^{56}$Ni masses of normal SNe II with a precision around 30 per cent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا