No Arabic abstract
The stellar population of the Milky Way bulge is thoroughly studied, with a plethora of measurements from virtually the full suite of instruments available to astronomers. It is thus perhaps surprising that alongside well-established results lies some substantial uncertainty in its star-formation history. Cosmological models predict the bulge to host the Galaxys oldest stars for [Fe/H]$lesssim -1$, and this is demonstrated by RR Lyrae stars and globular cluster observations. There is consensus that bulge stars with [Fe/H]$lesssim0$ are older than $t approx10$ Gyr. However, at super-solar metallicity, there is a substantial unresolved discrepancy. Data from spectroscopic measurements of the main-sequence turnoff and subgiant branch, the abundances of asymptotic giant branch stars, the period distribution of Mira variables, the chemistry and central-star masses of planetary nebulae, all suggest a substantial intermediate-age population ($t approx 3$ Gyr). This is in conflict with predictions from cosmologically-motivated chemical evolution models and photometric studies of the main-sequence turnoff region, which both suggest virtually no stars younger than $t approx 8$ Gyr. A possible resolution to this conflict is enhanced helium-enrichment, as this would shift nearly all of the age estimates in the direction of decreasing discrepancy. Enhanced helium-enrichment is also arguably suggested by measurements of the red giant branch bump and the R-parameter.
The relations between star formation and properties of molecular clouds are studied based on a sample of star forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated molecular clouds and dense clumps. Radio continuum and mid-infrared emission were used to determine star formation rates, while 13CO and submillimeter dust continuum emission were used to obtain masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. We also test two specific theoretical models, one relying on the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star forming regions and extragalactic data. The star formation efficiency, defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas.
Gaia DR2 provides unprecedented precision in measurements of the distance and kinematics of stars in the solar neighborhood. Through applying unsupervised machine learning on DR2s 5-dimensional dataset (3d position + 2d velocity), we identify a number of clusters, associations, and co-moving groups within 1 kpc and $|b|<30^circ$ (many of which have not been previously known). We estimate their ages with the precision of $sim$0.15 dex. Many of these groups appear to be filamentary or string-like, oriented in parallel to the Galactic plane, and some span hundreds of pc in length. Most of these string lack a central cluster, indicating that their filamentary structure is primordial, rather than the result of tidal stripping or dynamical processing. The youngest strings ($<$100 Myr) are orthogonal to the Local Arm. The older ones appear to be remnants of several other arm-like structures that cannot be presently traced by dust and gas. The velocity dispersion measured from the ensemble of groups and strings increase with age, suggesting a timescale for dynamical heating of $sim$300 Myr. This timescale is also consistent with the age at which the population of strings begins to decline, while the population in more compact groups continues to increase, suggesting that dynamical processes are disrupting the weakly bound string populations, leaving only individual clusters to be identified at the oldest ages. These data shed a new light on the local galactic structure and a large scale cloud collapse.
We present the non-local thermodynamic equilibrium (NLTE) abundances of up to 10 chemical species in a sample of 59 very metal-poor (VMP, -4 < [Fe/H] < -2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo. Our results are based on high-resolution spectroscopic datasets and homogeneous and accurate atmospheric parameters determined in PaperI. We show that once the NLTE effects are properly taken into account, all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [alpha/Fe] ~ 0.3 for each of the alpha-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in alpha/Fe with increasing metallicity in the BootesI ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. The dichotomy in the [Sr/Ba] versus [Ba/H] diagram is observed in the classical dSphs, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr. We show that Sr in the massive galaxies is well correlated with Mg suggesting a strong link to massive stars and that its production is essentially independent of Ba, for most of the [Ba/H] range. Our three UFDs: BootesI, UMaII, and LeoIV are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ~ -1.3 and [Ba/Mg] ~ -1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Bootes I and UMa II indicate a common r-process origin of their neutron-capture elements. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] < -2, is the strongest.
The nuclear bulge is a region with a radius of about 200 parsecs around the centre of the Milky Way. It contains stars with ages ranging from a few million years to over a billion years, yet its star-formation history and the triggering process for star formation remain to be resolved. Recently, episodic star formation, powered by changes in the gas content, has been suggested. Classical Cepheid variable stars have pulsation periods that decrease with increasing age, so it is possible to probe the star-formation history on the basis of the distribution of their periods. Here we report the presence of three classical Cepheids in the nuclear bulge with pulsation periods of approximately 20 days, within 40 parsecs (projected distance) of the central black hole. No Cepheids with longer or shorter periods were found. We infer that there was a period about 25 million years ago, and possibly lasting until recently, in which star formation increased relative to the period of 30-70 million years ago.
We have derived the star formation history of the Milky Way disk over the last 2 Gyr from the age distribution diagram of a large sample of open clusters comprising more than 580 objects. By interpreting the age distribution diagram using numerical results from an extensive library of N-body calculations carried out during the last ten years, we reconstruct the recent star formation history of the Milky Way disk. Our analysis suggests that superimposed on a relatively small level of constant star formation activity mainly in small-N star clusters, the star formation rate has experienced at least 5 episodes of enhanced star formation lasting about 0.2 Gyr with production of larger clusters. This cyclic behavior seems to show a period of 0.4+/-0.1 Gyr.