No Arabic abstract
Milky Way dwarf satellites are unique objects that encode the early structure formation and therefore represent a window into the high redshift Universe. So far, their study was conducted using electromagnetic waves only. The future Laser Interferometer Space Antenna (LISA) has the potential to reveal Milky Way satellites in gravitational waves emitted by double white dwarf (DWD) binaries. We investigate gravitational wave (GW) signals detectable by LISA as a possible tool for the identification and characterisation of the Milky Way satellites. We use the binary population synthesis technique to model the population of DWDs in dwarf satellites and we assess the impact on the number of LISA detections when making changes to the total stellar mass, distance, star formation history and metallicity of satellites. We calibrate predictions for the known Milky Way satellites on their observed properties. We find that DWDs emitting at frequencies $gtrsim 3,$mHz can be detected in Milky Way satellites at large galactocentric distances. The number of these high frequency DWDs per satellite primarily depends on its mass, distance, age and star formation history, and only mildly depends on the other assumptions regarding their evolution such as metallicity. We find that dwarf galaxies with $M_star>10^6,$M$_{odot}$ can host detectable LISA sources with a number of detections that scales linearly with the satellites mass. We forecast that out of the known satellites, Sagittarius, Fornax, Sculptor and the Magellanic Clouds can be detected with LISA. As an all-sky survey that does not suffer from contamination and dust extinction, LISA will provide observations of the Milky Way and dwarf satellites galaxies valuable for Galactic archaeology and near-field cosmology.
White dwarf stars are a well-established tool for studying Galactic stellar populations. Two white dwarfs in a tight binary system offer us an additional messenger - gravitational waves - for exploring the Milky Way and its immediate surroundings. Gravitational waves produced by double white dwarf (DWD) binaries can be detected by the future Laser Interferometer Space Antenna (LISA). Numerous and widespread DWDs have the potential to probe shapes, masses and formation histories of the stellar populations in the Galactic neighbourhood. In this work we outline a method for estimating the total stellar mass of Milky Way satellite galaxies based on the number of DWDs detected by LISA. To constrain the mass we perform a Bayesian inference using binary population synthesis models and considering the number of detected DWDs associated with the satellite and the measured distance to the satellite as the only inputs. Using a fiducial binary population synthesis model we find that for large satellites the stellar masses can be recovered to within 1) a factor two if the star formation history is known and 2) an order of magnitude when marginalising over different star formation history models. For smaller satellites we can place upper limits on their stellar mass. Gravitational wave observations can provide mass measurements for large satellites that are comparable, and in some cases more precise, than standard electromagnetic observations.
The population of Milky Way satellite galaxies is of great interest for cosmology, fundamental physics, and astrophysics. They represent the faint end of the galaxy luminosity function, are the most dark-matter dominated objects in the local Universe, and contain the oldest and most metal-poor stellar populations. Recent surveys have revealed around 60 satellites, but this could represent less than half of the total. Characterization of these systems remains a challenge due to their low luminosity. We consider the gravitational wave observatory LISA as a potential tool for studying these satellites through observations of their short-period double white dwarf populations. LISA will observe the entire sky without selection effects due to dust extinction, complementing optical surveys, and could potentially discover massive satellites hidden behind the disk of the galaxy.
Recently, Tamanini & Danielski (2019) discussed the possibility to detect circumbinary exoplanets (CBPs) orbiting double white dwarfs (DWDs) with the Laser Interferometer Space Antenna (LISA). Extending their methods and criteria, we discuss the prospects for detecting exoplanets around DWDs not only by LISA, but also by Taiji, a Chinese space-borne gravitational-wave (GW) mission which has a slightly better sensitivity at low frequencies. We first explore how different binary masses and mass ratios affect the abilities of LISA and Taiji to detect CBPs. Second, for certain known detached DWDs with high signal-to-noise ratios, we quantify the possibility of CBP detections around them. Third, based on the DWD population obtained from the Mock LISA Data Challenge, we present basic assessments of the CBP detections in our Galaxy during a 4-year mission time for LISA and Taiji. We discuss the constraints on the detectable zone of each system, as well as the distributions of the inner/outer edge of the detectable zone. Based on the DWD population, we further inject two different planet distributions with an occurrence rate of $50%$ and constrain the total detection rates. We finally briefly discuss the prospects for detecting habitable CBPs around DWDs with a simplified model. These results can provide helpful inputs for upcoming exoplanetary projects and help analyze planetary systems after the common envelope phase.
We determine the main properties of the Galactic binary black hole (BBH) population detectable by LISA and strategies to distinguish them from the much more numerous white dwarf binaries. We simulate BBH populations based on cosmological simulations of Milky Way-like galaxies and binary evolution models. We then determine their gravitational wave emission as observed by LISA and build mock catalogs. According to our model LISA will detect $approx4(6)$ binary black holes assuming 4(10) years of operations. Those figures grow to $approx6(9)$ when models are re-normalized to the inferred LIGO/Virgo merger rates. About 40%(70%) of the sources will have a good enough chirp mass measurement to separate them from the much lighter white dwarf and neutron star binaries. Most of the remaining sources should be identifiable by their lack of electromagnetic counterpart within $approx100$ pc. These results are robust with respect to the current uncertainties of the BBH merger rate as measured by LIGO/Virgo as well as the global mass spectrum of the binaries. We determine there is a 94 per cent chance that LISA finds at least one of these systems, which will allow us to pinpoint the conditions where they were formed and possibly find unique electromagnetic signatures.
As massive black holes (MBHs) grow from lower-mass seeds, it is natural to expect that a leftover population of progenitor MBHs should also exist in the present universe. Dwarf galaxies undergo a quiet merger history, and as a result, we expect that dwarfs observed in the local Universe retain some `memory of the original seed mass distribution. Consequently, the properties of MBHs in nearby dwarf galaxies may provide clean indicators of the efficiency of MBH formation. In order to examine the properties of MBHs in dwarf galaxies, we evolve different MBH populations within a Milky Way halo from high-redshift to today. We consider two plausible MBH formation mechanisms: `massive seeds formed via gas-dynamical instabilities and a Population III remnant seed model. `Massive seeds have larger masses than PopIII remnants, but form in rarer hosts. We dynamically evolve all halos merging with the central system, taking into consideration how the interaction modifies the satellites, stripping their outer mass layers. We compute different properties of the MBH population hosted in these satellites. We find that for the most part MBHs retain the original mass, thus providing a clear indication of what the properties of the seeds were. We derive the black hole occupation fraction (BHOF) of the satellite population at z=0. MBHs generated as `massive seeds have large masses that would favour their identification, but their typical BHOF is always below 40 per cent and decreases to less than per cent for observed dwarf galaxy sizes. In contrast, Population III remnants have a higher BHOF, but their masses have not grown much since formation, inhibiting their detection.