Do you want to publish a course? Click here

Using multiple ASR hypotheses to boost i18n NLU performance

47   0   0.0 ( 0 )
 Added by Charith Peris
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Current voice assistants typically use the best hypothesis yielded by their Automatic Speech Recognition (ASR) module as input to their Natural Language Understanding (NLU) module, thereby losing helpful information that might be stored in lower-ranked ASR hypotheses. We explore the change in performance of NLU associated tasks when utilizing five-best ASR hypotheses when compared to status quo for two language datasets, German and Portuguese. To harvest information from the ASR five-best, we leverage extractive summarization and joint extractive-abstractive summarization models for Domain Classification (DC) experiments while using a sequence-to-sequence model with a pointer generator network for Intent Classification (IC) and Named Entity Recognition (NER) multi-task experiments. For the DC full test set, we observe significant improvements of up to 7.2% and 15.5% in micro-averaged F1 scores, for German and Portuguese, respectively. In cases where the best ASR hypothesis was not an exact match to the transcribed utterance (mismatched test set), we see improvements of up to 6.7% and 8.8% micro-averaged F1 scores, for German and Portuguese, respectively. For IC and NER multi-task experiments, when evaluating on the mismatched test set, we see improvements across all domains in German and in 17 out of 19 domains in Portuguese (improvements based on change in SeMER scores). Our results suggest that the use of multiple ASR hypotheses, as opposed to one, can lead to significant performance improvements in the DC task for these non-English datasets. In addition, it could lead to significant improvement in the performance of IC and NER tasks in cases where the ASR model makes mistakes.



rate research

Read More

We consider the problem of spoken language understanding (SLU) of extracting natural language intents and associated slot arguments or named entities from speech that is primarily directed at voice assistants. Such a system subsumes both automatic speech recognition (ASR) as well as natural language understanding (NLU). An end-to-end joint SLU model can be built to a required specification opening up the opportunity to deploy on hardware constrained scenarios like devices enabling voice assistants to work offline, in a privacy preserving manner, whilst also reducing server costs. We first present models that extract utterance intent directly from speech without intermediate text output. We then present a compositional model, which generates the transcript using the Listen Attend Spell ASR system and then extracts interpretation using a neural NLU model. Finally, we contrast these methods to a jointly trained end-to-end joint SLU model, consisting of ASR and NLU subsystems which are connected by a neural network based interface instead of text, that produces transcripts as well as NLU interpretation. We show that the jointly trained model shows improvements to ASR incorporating semantic information from NLU and also improves NLU by exposing it to ASR confusion encoded in the hidden layer.
In a modern spoken language understanding (SLU) system, the natural language understanding (NLU) module takes interpretations of a speech from the automatic speech recognition (ASR) module as the input. The NLU module usually uses the first best interpretation of a given speech in downstream tasks such as domain and intent classification. However, the ASR module might misrecognize some speeches and the first best interpretation could be erroneous and noisy. Solely relying on the first best interpretation could make the performance of downstream tasks non-optimal. To address this issue, we introduce a series of simple yet efficient models for improving the understanding of semantics of the input speeches by collectively exploiting the n-best speech interpretations from the ASR module.
In this paper, we address a relatively new task: prediction of ASR performance on unseen broadcast programs. We first propose an heterogenous French corpus dedicated to this task. Two prediction approaches are compared: a state-of-the-art performance prediction based on regression (engineered features) and a new strategy based on convolutional neural networks (learnt features). We particularly focus on the combination of both textual (ASR transcription) and signal inputs. While the joint use of textual and signal features did not work for the regression baseline, the combination of inputs for CNNs leads to the best WER prediction performance. We also show that our CNN prediction remarkably predicts the WER distribution on a collection of speech recordings.
This paper presents our modeling and architecture approaches for building a highly accurate low-latency language identification system to support multilingual spoken queries for voice assistants. A common approach to solve multilingual speech recognition is to run multiple monolingual ASR systems in parallel and rely on a language identification (LID) component that detects the input language. Conventionally, LID relies on acoustic only information to detect input language. We propose an approach that learns and combines acoustic level representations with embeddings estimated on ASR hypotheses resulting in up to 50% relative reduction of identification error rate, compared to a model that uses acoustic only features. Furthermore, to reduce the processing cost and latency, we exploit a streaming architecture to identify the spoken language early when the system reaches a predetermined confidence level, alleviating the need to run multiple ASR systems until the end of input query. The combined acoustic and text LID, coupled with our proposed streaming runtime architecture, results in an average of 1500ms early identification for more than 50% of utterances, with almost no degradation in accuracy. We also show improved results by adopting a semi-supervised learning (SSL) technique using the newly proposed model architecture as a teacher model.
Empirical research in Natural Language Processing (NLP) has adopted a narrow set of principles for assessing hypotheses, relying mainly on p-value computation, which suffers from several known issues. While alternative proposals have been well-debated and adopted in other fields, they remain rarely discussed or used within the NLP community. We address this gap by contrasting various hypothesis assessment techniques, especially those not commonly used in the field (such as evaluations based on Bayesian inference). Since these statistical techniques differ in the hypotheses they can support, we argue that practitioners should first decide their target hypothesis before choosing an assessment method. This is crucial because common fallacies, misconceptions, and misinterpretation surrounding hypothesis assessment methods often stem from a discrepancy between what one would like to claim versus what the method used actually assesses. Our survey reveals that these issues are omnipresent in the NLP research community. As a step forward, we provide best practices and guidelines tailored to NLP research, as well as an easy-to-use package called HyBayes for Bayesian assessment of hypotheses, complementing existing tools.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا