No Arabic abstract
We consider the problem of spoken language understanding (SLU) of extracting natural language intents and associated slot arguments or named entities from speech that is primarily directed at voice assistants. Such a system subsumes both automatic speech recognition (ASR) as well as natural language understanding (NLU). An end-to-end joint SLU model can be built to a required specification opening up the opportunity to deploy on hardware constrained scenarios like devices enabling voice assistants to work offline, in a privacy preserving manner, whilst also reducing server costs. We first present models that extract utterance intent directly from speech without intermediate text output. We then present a compositional model, which generates the transcript using the Listen Attend Spell ASR system and then extracts interpretation using a neural NLU model. Finally, we contrast these methods to a jointly trained end-to-end joint SLU model, consisting of ASR and NLU subsystems which are connected by a neural network based interface instead of text, that produces transcripts as well as NLU interpretation. We show that the jointly trained model shows improvements to ASR incorporating semantic information from NLU and also improves NLU by exposing it to ASR confusion encoded in the hidden layer.
Current voice assistants typically use the best hypothesis yielded by their Automatic Speech Recognition (ASR) module as input to their Natural Language Understanding (NLU) module, thereby losing helpful information that might be stored in lower-ranked ASR hypotheses. We explore the change in performance of NLU associated tasks when utilizing five-best ASR hypotheses when compared to status quo for two language datasets, German and Portuguese. To harvest information from the ASR five-best, we leverage extractive summarization and joint extractive-abstractive summarization models for Domain Classification (DC) experiments while using a sequence-to-sequence model with a pointer generator network for Intent Classification (IC) and Named Entity Recognition (NER) multi-task experiments. For the DC full test set, we observe significant improvements of up to 7.2% and 15.5% in micro-averaged F1 scores, for German and Portuguese, respectively. In cases where the best ASR hypothesis was not an exact match to the transcribed utterance (mismatched test set), we see improvements of up to 6.7% and 8.8% micro-averaged F1 scores, for German and Portuguese, respectively. For IC and NER multi-task experiments, when evaluating on the mismatched test set, we see improvements across all domains in German and in 17 out of 19 domains in Portuguese (improvements based on change in SeMER scores). Our results suggest that the use of multiple ASR hypotheses, as opposed to one, can lead to significant performance improvements in the DC task for these non-English datasets. In addition, it could lead to significant improvement in the performance of IC and NER tasks in cases where the ASR model makes mistakes.
The spatial covariance matrix has been considered to be significant for beamformers. Standing upon the intersection of traditional beamformers and deep neural networks, we propose a causal neural beamformer paradigm called Embedding and Beamforming, and two core modules are designed accordingly, namely EM and BM. For EM, instead of estimating spatial covariance matrix explicitly, the 3-D embedding tensor is learned with the network, where both spectral and spatial discriminative information can be represented. For BM, a network is directly leveraged to derive the beamforming weights so as to implement filter-and-sum operation. To further improve the speech quality, a post-processing module is introduced to further suppress the residual noise. Based on the DNS-Challenge dataset, we conduct the experiments for multichannel speech enhancement and the results show that the proposed system outperforms previous advanced baselines by a large margin in multiple evaluation metrics.
Automatic speech recognition (ASR) for under-represented named-entity (UR-NE) is challenging due to such named-entities (NE) have insufficient instances and poor contextual coverage in the training data to learn reliable estimates and representations. In this paper, we propose approaches to enriching UR-NEs to improve speech recognition performance. Specifically, our first priority is to ensure those UR-NEs to appear in the word lattice if there is any. To this end, we make exemplar utterances for those UR-NEs according to their categories (e.g. location, person, organization, etc.), ending up with an improved language model (LM) that boosts the UR-NE occurrence in the word lattice. With more UR-NEs appearing in the lattice, we then boost the recognition performance through lattice rescoring methods. We first enrich the representations of UR-NEs in a pre-trained recurrent neural network LM (RNNLM) by borrowing the embedding representations of the rich-represented NEs (RR-NEs), yielding the lattices that statistically favor the UR-NEs. Finally, we directly boost the likelihood scores of the utterances containing UR-NEs and gain further performance improvement.
In this paper, we propose to use pre-trained features from end-to-end ASR models to solve speech sentiment analysis as a down-stream task. We show that end-to-end ASR features, which integrate both acoustic and text information from speech, achieve promising results. We use RNN with self-attention as the sentiment classifier, which also provides an easy visualization through attention weights to help interpret model predictions. We use well benchmarked IEMOCAP dataset and a new large-scale speech sentiment dataset SWBD-sentiment for evaluation. Our approach improves the-state-of-the-art accuracy on IEMOCAP from 66.6% to 71.7%, and achieves an accuracy of 70.10% on SWBD-sentiment with more than 49,500 utterances.
The attention-based end-to-end (E2E) automatic speech recognition (ASR) architecture allows for joint optimization of acoustic and language models within a single network. However, in a vanilla E2E ASR architecture, the decoder sub-network (subnet), which incorporates the role of the language model (LM), is conditioned on the encoder output. This means that the acoustic encoder and the language model are entangled that doesnt allow language model to be trained separately from external text data. To address this problem, in this work, we propose a new architecture that separates the decoder subnet from the encoder output. In this way, the decoupled subnet becomes an independently trainable LM subnet, which can easily be updated using the external text data. We study two strategies for updating the new architecture. Experimental results show that, 1) the independent LM architecture benefits from external text data, achieving 9.3% and 22.8% relative character and word error rate reduction on Mandarin HKUST and English NSC datasets respectively; 2)the proposed architecture works well with external LM and can be generalized to different amount of labelled data.