Do you want to publish a course? Click here

Terahertz Electrodynamics of Mixed-Valent YbAl$_3$ and LuAl$_3$ Thin Films

142   0   0.0 ( 0 )
 Added by David Barbalas
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present THz measurements of thin films of mixed-valent YbAl$_3$ and its structural analogue LuAl$_3$. Combined with traditional Fourier transform infrared (FTIR) spectroscopy, the extended Drude formalism is utilized to study the low-frequency transport of these materials. We find that LuAl$_3$ demonstrates conventional Drude transport whereas at low temperatures YbAl$_3$ demonstrates a sharply renormalized Drude peak and a mid-infrared (MIR) peak in the conductivity, indicative of the formation of a heavy Fermi liquid. In YbAl$_3$ the extended Drude framework shows a consistency of the scattering rate with Fermi-liquid behavior below $T < 40$ K and a moderate mass enhancement. While a $omega^2$ Fermi liquid-like frequency dependence is not clearly exhibited, the temperature dependence of the Drude scattering rate and effective mass is consistent with the formation of a low-temperature moderately heavy Fermi liquid, albeit one with a smaller mass than observed in single crystals. The extended Drude analysis also supports a slow crossover between the Fermi liquid state and the normal state in YbAl$_3$.



rate research

Read More

LaVO$_3$ (LVO) has been proposed as a promising material for photovoltaics because its strongly correlated textit{d} electrons can facilitate the creation of multiple electron-hole pairs per incoming photon, which would lead to increased device efficiency. In this study, we intentionally grow off-stoichiometric LVO films by changing the growth conditions such as laser fluence. Our aim is to study how deviating La:V stoichiometries affect the electronic properties of LVO thin films. We find that the off-stoichiometry clearly alters the physical properties of the films. Structural characterization shows that both La-rich and V-rich films have different levels of structural distortion, with La-rich (V-rich) films showing a larger (smaller) out-of-plane lattice parameter compared to what one would expect from epitaxial strain effects alone. Both types of films show deviation from the behavior of bulk LVO in optical measurement, i.e., they do not show signatures of the expected long range orbital order, which can be a result of the structural distortions or the presence of structural domains. In transport measurements, La-rich films display clear signatures of electronic phase separation accompanying a temperature induced metal-insulator transition, while V-rich films behave as Mott insulators. The out-of-plane lattice parameter plays a crucial role in determining the transport properties, as the crossover from Mott-insulating to disorder-induced phase-separated behavior occurs around a lattice parameter value of 3.96 $overset{circ}{mathrm{A}}$, quite different from what has been previously reported.
We study the magneto-optical Kerr effect (MOKE) in SrRuO$_3$ thin films, uncovering wide regimes of wavelength, temperature, and magnetic field where the Kerr rotation is not simply proportional to the magnetization but instead displays two-component behavior. One component of the MOKE signal tracks the average magnetization, while the second anomalous component bears a resemblance to anomalies in the Hall resistivity which have been previously reported in skyrmion materials. We present a theory showing that the MOKE anomalies arise from the non-monotonic relation between the Kerr angle and the magnetization, when we average over magnetic domains which proliferate near the coercive field. Our results suggest that inhomogeneous domain formation, rather than skyrmions, may provide a common origin for the observed MOKE and Hall resistivity anomalies.
We report on a fundamental thickness limit of the itinerant ferromagnetic oxide SrRuO$_3$ that might arise from the orbital-selective quantum confinement effects. Experimentally, SrRuO$_3$ films remain metallic even for a thickness of 2 unit cells (uc), but the Curie temperature, T$_C$, starts to decrease at 4 uc and becomes zero at 2 uc. Using the Stoner model, we attributed the T$_C$ decrease to a decrease in the density of states (N$_o$). Namely, in the thin film geometry, the hybridized Ru-d$_yz,zx$ orbitals are terminated by top and bottom interfaces, resulting in quantum confinement and reduction of N$_o$.
167 - M. Hepting , M. Minola , A. Frano 2014
We have used polarized Raman scattering to probe lattice vibrations and charge ordering in 12 nm thick, epitaxially strained PrNiO$_3$ films, and in superlattices of PrNiO$_3$ with the band-insulator PrAlO$_3$. A carefully adjusted confocal geometry was used to eliminate the substrate contribution to the Raman spectra. In films and superlattices under tensile strain, which undergo a metal-insulator transition upon cooling, the Raman spectra reveal phonon modes characteristic of charge ordering. These anomalous phonons do not appear in compressively strained films, which remain metallic at all temperatures. For superlattices under compressive strain, the Raman spectra show no evidence of anomalous phonons indicative of charge ordering, while complementary resonant x-ray scattering experiments reveal antiferromagnetic order associated with a modest increase in resistivity upon cooling. This confirms theoretical predictions of a spin density wave phase driven by spatial confinement of the conduction electrons.
The 2D electron gas (2DEG) formed at the surface of SrTiO$_3$(001) has attracted great interest because of its fascinating physical properties and potential as a novel electronic platform, but up to now has eluded a comprehensible way to tune its properties. Using angle-resolved photoemission spectroscopy with and without spin detection we here show that the band filling can be controlled by growing thin SrTiO$_3$ films on Nb doped SrTiO$_3$(001) substrates. This results in a single spin-polarised 2D Fermi surface, which bears potential as platform for Majorana physics. Based on our results it can furthermore be concluded that the 2DEG does not extend more than 2 unit cells into the film and that its properties depend on the amount of SrO$_x$ at the surface and possibly the dielectric response of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا