No Arabic abstract
We report on a fundamental thickness limit of the itinerant ferromagnetic oxide SrRuO$_3$ that might arise from the orbital-selective quantum confinement effects. Experimentally, SrRuO$_3$ films remain metallic even for a thickness of 2 unit cells (uc), but the Curie temperature, T$_C$, starts to decrease at 4 uc and becomes zero at 2 uc. Using the Stoner model, we attributed the T$_C$ decrease to a decrease in the density of states (N$_o$). Namely, in the thin film geometry, the hybridized Ru-d$_yz,zx$ orbitals are terminated by top and bottom interfaces, resulting in quantum confinement and reduction of N$_o$.
Ultrathin films of the itinerant ferromagnet SrRuO$_3$ were studied using transport and magnto-optic polar Kerr effect. We find that below 4 monolayers the films become insulating and their magnetic character changes as they loose their simple ferromagnetic behavior. We observe a strong reduction in the magnetic moment which for 3 monolayers and below lies in the plane of the film. Exchange-bias behavior is observed below the critical thickness, and may point to induced antiferromagnetism in contact with ferromagnetic regions.
We study the magneto-optical Kerr effect (MOKE) in SrRuO$_3$ thin films, uncovering wide regimes of wavelength, temperature, and magnetic field where the Kerr rotation is not simply proportional to the magnetization but instead displays two-component behavior. One component of the MOKE signal tracks the average magnetization, while the second anomalous component bears a resemblance to anomalies in the Hall resistivity which have been previously reported in skyrmion materials. We present a theory showing that the MOKE anomalies arise from the non-monotonic relation between the Kerr angle and the magnetization, when we average over magnetic domains which proliferate near the coercive field. Our results suggest that inhomogeneous domain formation, rather than skyrmions, may provide a common origin for the observed MOKE and Hall resistivity anomalies.
Topological spin textures in an itinerant ferromagnet, SrRuO$_3$ is studied combining Hall transport measurements and numerical simulations. We observe characteristic signatures of the Topological Hall Effect associated with skyrmions. A relatively large thickness of our films and absence of heavy metal layers make the interfacial Dzyaloshinskii-Moriya interaction an unlikely source of these topological spin textures. Additionally, the transport anomalies exhibit an unprecedented robustness to magnetic field tilting and temperature. Our numerical simulations suggest that this unconventional behavior results from magnetic bubbles with skyrmion topology stabilized by magnetodipolar interactions in an unexpected region of parameter space.
A notion of the Berry phase is a powerful means to unravel the non-trivial role of topology in various novel phenomena observed in chiral magnetic materials and structures. A celebrated example is the intrinsic anomalous Hall effect (AHE) driven by the non-vanishing Berry phase in the momentum space. As the AHE is highly dependent on details of the band structure near the Fermi edge, the Berry phase and AHE can be altered in thin films whose chemical potential is tunable by dimensionality and disorder. Here, we demonstrate that in ultrathin SrRuO$_3$ films the Berry phase can be effectively manipulated by the effects of disorder on the intrinsic Berry phase contribution to the AHE, which is corroborated by our numerically exact calculations. In addition, our findings provide ample experimental evidence for the superficial nature of the topological Hall effect attribution to the protected spin texture and instead lend strong support to the multi-channel AHE scenario in ultrathin SrRuO$_3$.
SrRuO$_3$ heterostructures grown in the (111) direction are a rare example of thin film ferromagnets. By means of density functional theory plus dynamical mean field theory we show that the half-metallic ferromagnetic state with an ordered magnetic moment of 2$mu_{B}$/Ru survives the ultimate dimensional confinement down to a bilayer, even at elevated temperatures of 500$,$K. In the minority channel, the spin-orbit coupling opens a gap at the linear band crossing corresponding to $frac34$ filling of the $t_{2g}$ shell. We demonstrate that the respective state is Haldanes quantum anomalous Hall state with Chern number $C$=1, without an external magnetic field or magnetic impurities.