Do you want to publish a course? Click here

Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning

156   0   0.0 ( 0 )
 Added by Chao Du
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Modern online advertising systems inevitably rely on personalization methods, such as click-through rate (CTR) prediction. Recent progress in CTR prediction enjoys the rich representation capabilities of deep learning and achieves great success in large-scale industrial applications. However, these methods can suffer from lack of exploration. Another line of prior work addresses the exploration-exploitation trade-off problem with contextual bandit methods, which are recently less studied in the industry due to the difficulty in extending their flexibility with deep models. In this paper, we propose a novel Deep Uncertainty-Aware Learning (DUAL) method to learn CTR models based on Gaussian processes, which can provide predictive uncertainty estimations while maintaining the flexibility of deep neural networks. DUAL can be easily implemented on existing models and deployed in real-time systems with minimal extra computational overhead. By linking the predictive uncertainty estimation ability of DUAL to well-known bandit algorithms, we further present DUAL-based Ad-ranking strategies to boost up long-term utilities such as the social welfare in advertising systems. Experimental results on several public datasets demonstrate the effectiveness of our methods. Remarkably, an online A/B test deployed in the Alibaba display advertising platform shows an 8.2% social welfare improvement and an 8.0% revenue lift.

rate research

Read More

With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in utilizing RL for online advertising in recommendation platforms (e.g., e-commerce and news feed sites). However, most RL-based advertising algorithms focus on optimizing ads revenue while ignoring the possible negative influence of ads on user experience of recommended items (products, articles and videos). Developing an optimal advertising algorithm in recommendations faces immense challenges because interpolating ads improperly or too frequently may decrease user experience, while interpolating fewer ads will reduce the advertising revenue. Thus, in this paper, we propose a novel advertising strategy for the rec/ads trade-off. To be specific, we develop an RL-based framework that can continuously update its advertising strategies and maximize reward in the long run. Given a recommendation list, we design a novel Deep Q-network architecture that can determine three internally related tasks jointly, i.e., (i) whether to interpolate an ad or not in the recommendation list, and if yes, (ii) the optimal ad and (iii) the optimal location to interpolate. The experimental results based on real-world data demonstrate the effectiveness of the proposed framework.
Search, recommendation, and online advertising are the three most important information-providing mechanisms on the web. These information seeking techniques, satisfying users information needs by suggesting users personalized objects (information or services) at the appropriate time and place, play a crucial role in mitigating the information overload problem. With recent great advances in deep reinforcement learning (DRL), there have been increasing interests in developing DRL based information seeking techniques. These DRL based techniques have two key advantages -- (1) they are able to continuously update information seeking strategies according to users real-time feedback, and (2) they can maximize the expected cumulative long-term reward from users where reward has different definitions according to information seeking applications such as click-through rate, revenue, user satisfaction and engagement. In this paper, we give an overview of deep reinforcement learning for search, recommendation, and online advertising from methodologies to applications, review representative algorithms, and discuss some appealing research directions.
A significant remaining challenge for existing recommender systems is that users may not trust the recommender systems for either lack of explanation or inaccurate recommendation results. Thus, it becomes critical to embrace a trustworthy recommender system. This survey provides a systemic summary of three categories of trust-aware recommender systems: social-aware recommender systems that leverage users social relationships; robust recommender systems that filter untruthful noises (e.g., spammers and fake information) or enhance attack resistance; explainable recommender systems that provide explanations of recommended items. We focus on the work based on deep learning techniques, an emerging area in the recommendation research.
151 - Liyi Guo , Junqi Jin , Haoqi Zhang 2021
Advertising expenditures have become the major source of revenue for e-commerce platforms. Providing good advertising experiences for advertisers by reducing their costs of trial and error in discovering the optimal advertising strategies is crucial for the long-term prosperity of online advertising. To achieve this goal, the advertising platform needs to identify the advertisers optimization objectives, and then recommend the corresponding strategies to fulfill the objectives. In this work, we first deploy a prototype of strategy recommender system on Taobao display advertising platform, which indeed increases the advertisers performance and the platforms revenue, indicating the effectiveness of strategy recommendation for online advertising. We further augment this prototype system by explicitly learning the advertisers preferences over various advertising performance indicators and then optimization objectives through their adoptions of different recommending advertising strategies. We use contextual bandit algorithms to efficiently learn the advertisers preferences and maximize the recommendation adoption, simultaneously. Simulation experiments based on Taobao online bidding data show that the designed algorithms can effectively optimize the strategy adoption rate of advertisers.
Online learning to rank (OL2R) optimizes the utility of returned search results based on implicit feedback gathered directly from users. To improve the estimates, OL2R algorithms examine one or more exploratory gradient directions and update the current ranker if a proposed one is preferred by users via an interleaved test. In this paper, we accelerate the online learning process by efficient exploration in the gradient space. Our algorithm, named as Null Space Gradient Descent, reduces the exploration space to only the emph{null space} of recent poorly performing gradients. This prevents the algorithm from repeatedly exploring directions that have been discouraged by the most recent interactions with users. To improve sensitivity of the resulting interleaved test, we selectively construct candidate rankers to maximize the chance that they can be differentiated by candidate ranking documents in the current query; and we use historically difficult queries to identify the best ranker when tie occurs in comparing the rankers. Extensive experimental comparisons with the state-of-the-art OL2R algorithms on several public benchmarks confirmed the effectiveness of our proposal algorithm, especially in its fast learning convergence and promising ranking quality at an early stage.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا