No Arabic abstract
Search, recommendation, and online advertising are the three most important information-providing mechanisms on the web. These information seeking techniques, satisfying users information needs by suggesting users personalized objects (information or services) at the appropriate time and place, play a crucial role in mitigating the information overload problem. With recent great advances in deep reinforcement learning (DRL), there have been increasing interests in developing DRL based information seeking techniques. These DRL based techniques have two key advantages -- (1) they are able to continuously update information seeking strategies according to users real-time feedback, and (2) they can maximize the expected cumulative long-term reward from users where reward has different definitions according to information seeking applications such as click-through rate, revenue, user satisfaction and engagement. In this paper, we give an overview of deep reinforcement learning for search, recommendation, and online advertising from methodologies to applications, review representative algorithms, and discuss some appealing research directions.
With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in utilizing RL for online advertising in recommendation platforms (e.g., e-commerce and news feed sites). However, most RL-based advertising algorithms focus on optimizing ads revenue while ignoring the possible negative influence of ads on user experience of recommended items (products, articles and videos). Developing an optimal advertising algorithm in recommendations faces immense challenges because interpolating ads improperly or too frequently may decrease user experience, while interpolating fewer ads will reduce the advertising revenue. Thus, in this paper, we propose a novel advertising strategy for the rec/ads trade-off. To be specific, we develop an RL-based framework that can continuously update its advertising strategies and maximize reward in the long run. Given a recommendation list, we design a novel Deep Q-network architecture that can determine three internally related tasks jointly, i.e., (i) whether to interpolate an ad or not in the recommendation list, and if yes, (ii) the optimal ad and (iii) the optimal location to interpolate. The experimental results based on real-world data demonstrate the effectiveness of the proposed framework.
Deep reinforcement learning enables an agent to capture users interest through interactions with the environment dynamically. It has attracted great interest in the recommendation research. Deep reinforcement learning uses a reward function to learn users interest and to control the learning process. However, most reward functions are manually designed; they are either unrealistic or imprecise to reflect the high variety, dimensionality, and non-linearity properties of the recommendation problem. That makes it difficult for the agent to learn an optimal policy to generate the most satisfactory recommendations. To address the above issue, we propose a novel generative inverse reinforcement learning approach, namely InvRec, which extracts the reward function from users behaviors automatically, for online recommendation. We conduct experiments on an online platform, VirtualTB, and compare with several state-of-the-art methods to demonstrate the feasibility and effectiveness of our proposed approach.
In this paper, the method UCB-RS, which resorts to recommendation system (RS) for enhancing the upper-confidence bound algorithm UCB, is presented. The proposed method is used for dealing with non-stationary and large-state spaces multi-armed bandit problems. The proposed method has been targeted to the problem of the product recommendation in the online advertising. Through extensive testing with RecoGym, an OpenAI Gym-based reinforcement learning environment for the product recommendation in online advertising, the proposed method outperforms the widespread reinforcement learning schemes such as $epsilon$-Greedy, Upper Confidence (UCB1) and Exponential Weights for Exploration and Exploitation (EXP3).
Interactive recommendation aims to learn from dynamic interactions between items and users to achieve responsiveness and accuracy. Reinforcement learning is inherently advantageous for coping with dynamic environments and thus has attracted increasing attention in interactive recommendation research. Inspired by knowledge-aware recommendation, we proposed Knowledge-Guided deep Reinforcement learning (KGRL) to harness the advantages of both reinforcement learning and knowledge graphs for interactive recommendation. This model is implemented upon the actor-critic network framework. It maintains a local knowledge network to guide decision-making and employs the attention mechanism to capture long-term semantics between items. We have conducted comprehensive experiments in a simulated online environment with six public real-world datasets and demonstrated the superiority of our model over several state-of-the-art methods.
Due to its nature of learning from dynamic interactions and planning for long-run performance, reinforcement learning (RL) recently has received much attention in interactive recommender systems (IRSs). IRSs usually face the large discrete action space problem, which makes most of the existing RL-based recommendation methods inefficient. Moreover, data sparsity is another challenging problem that most IRSs are confronted with. While the textual information like reviews and descriptions is less sensitive to sparsity, existing RL-based recommendation methods either neglect or are not suitable for incorporating textual information. To address these two problems, in this paper, we propose a Text-based Deep Deterministic Policy Gradient framework (TDDPG-Rec) for IRSs. Specifically, we leverage textual information to map items and users into a feature space, which greatly alleviates the sparsity problem. Moreover, we design an effective method to construct an action candidate set. By the policy vector dynamically learned from TDDPG-Rec that expresses the users preference, we can select actions from the candidate set effectively. Through experiments on three public datasets, we demonstrate that TDDPG-Rec achieves state-of-the-art performance over several baselines in a time-efficient manner.