Do you want to publish a course? Click here

Seed of Life in Space (SOLIS) XI. First measurement of nitrogen fractionation in shocked clumps of the L1157 protostellar outflow

74   0   0.0 ( 0 )
 Added by Milena Benedettini
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The isotopic ratio of nitrogen presents a wide range of values in the Solar System and in star forming system whose origin is still unclear. Chemical reactions in the gas phase are one of the possible processes that could modify the $^{14}$N/$^{15}$N ratio. We aim at investigating if and how the passage of a shock wave in the interstellar medium, can affect the relative fraction of nitrogen isotopes. The ideal place for such a study is the L1157 outflow, where several shocked clumps are present. We present the first measurement of the $^{14}$N/$^{15}$N ratio in the two shocked clumps, B1 and B0, of the protostellar outflow L1157, derived from the interferomteric maps of the H$^{13}$CN(1-0) and the HC$^{15}$N(1-0) lines. In B1, we find that the H$^{13}$CN(1-0) and HC$^{15}$N(1-0) emission traces the front of the clump, with averaged column density of $N$(H$^{13}$CN) $sim$ 7$times$10$^{12}$ cm$^{-2}$ and $N$(HC$^{15}$N) $sim$ 2$times$10$^{12}$ cm$^{-2}$. In this region the ratio H$^{13}$CN(1-0)/HC$^{15}$N(1-0) is quite uniform with an average value of $sim$ 5$pm$1. The same average value is also measured in the smaller clump B0e. Assuming the standard $^{12}$C/$^{13}$C = 68, we obtain $^{14}$N/$^{15}$N = 340$pm$70, similar to those usually found in prestellar cores and protostars. We analysed the prediction of a chemical shock model for several shock conditions and we found that the nitrogen and carbon fractionations do not vary much for the first period after the shock. The observed H$^{13}$CN/HC$^{15}$N can be reproduced by a non-dissociative, C-type shock with parameters in agreement with previous modelling of L1157-B1. Both observations and chemical models indicate that the shock propagation does not affect the nitrogen isotopic ratio that remains similar to that measured in lower temperature gas in prestellar cores and in protostellar envelopes.



rate research

Read More

We present observations of SO and $rm SO_2$ lines toward the shocked regions along the L1157 chemically rich outflow, taken in the context of the Seeds Of Life In Space IRAM-NOrthern Extended Millimeter Array Large Program, and supported by data from Submillimeter Array and IRAM-30 m telescope at 1.1--3.6 mm wavelengths. We simultaneously analyze, for the first time, all of the brightest shocks in the blueshifted lobe, namely, B0, B1, and B2. We found the following. (1) SO and $rm SO_2$ may trace different gas, given that the large(-scale) velocity gradient analysis indicates for $rm SO_2$ a volume density ($rm 10^5text{--}10^6,cm^{-3}$) denser than that of the gas emitting in SO by a factor up to an order of magnitude. (2) Investigating the 0.1 pc scale field of view, we note a tentative gradient along the path of the precessing jet. More specifically, $rm chi({SO/SO_2})$ decreases from the B0-B1 shocks to the older B2. (3) At a linear resolution of 500--1400 au, a tentative spatial displacement between the two emitting molecules is detected, with the SO peak closer (with respect to $rm SO_2$) to the position where the recent jet is impinging on the B1 cavity wall. Our astrochemical modeling shows that the SO and $rm SO_2$ abundances evolve on timescales less than about 1000 years. Furthermore, the modeling requires high abundances ($2times10^{-6}$) of both $rm H_2S/H$ and S/H injected in the gas phase due to the shock occurrence, so pre-frozen OCS only is not enough to reproduce our new observations.
L1157-B1 is one of the outflow shocked regions along the blue-shifted outflow driven by the Class 0 protostar L1157-mm, and is an ideal laboratory to study the material ejected from the grains in very short timescales, i.e. its chemical composition is representative of the composition of the grains. We imaged $^{28}$SiO, $^{29}$SiO and $^{30}$SiO J = 2-1 emission towards L1157-B1 and B0 with the NOrthern Extended Millimeter Array (NOEMA) interferometer as part of the Seeds of Life in Space (SOLIS) large project. We present here a study of the isotopic fractionation of SiO towards L1157-B1. Furthermore, we use the high spectral resolution observations on the main isotopologue, $^{28}$SiO, to study the jet impact on the dense gas. We present here also single-dish observations obtained with the IRAM 30m telescope and Herschel-HIFI. We carried out a non-LTE analysis using a Large Velocity Gradient (LVG) code to model the single-dish observations. From our observations we can show that (i) the (2-1) transition of the main isotopologue is optically thick in L1157-B1 even at high velocities, and (ii) the [$^{29}$SiO/$^{30}$SiO] ratio is constant across the source, and consistent with the solar value of 1.5. We report the first isotopic fractionation maps of SiO in a shocked region and show the absence of a mass dependent fractionation in $^{29}$Si and $^{30}$Si across L1157-B1. A high-velocity bullet in $^{28}$SiO has been identified, showing the signature of a jet impacting on the dense gas. With the dataset presented in this paper, both interferometric and single-dish, we were able to study in great detail the gas shocked at the B1a position and its surrounding gas.
Aim: In the past, observations of protostellar shocks have been able to set constraints on the formation route of formamide (NH2CHO), exploiting its observed spatial distribution and comparison with astrochemical model predictions. In this work, we follow the same strategy to study the case of acetaldehyde (CH3CHO). Method: To this end, we used the data obtained with the IRAM-NOEMA interferometer in the framework of the Large Program SOLIS to image the B0 and B1 shocks along the L1157 blueshifted outflow in methanol (CH3OH) and acetaldehyde line emission. Results: We imaged six CH3OH and eight CH3CHO lines which cover upper level energies up to 30 K. Both species trace the B0 molecular cavity as well as the northern B1 portion, i.e. the regions where the youngest shocks (1000 yr) occurred. The CH$_3$OH and CH$_3$CHO emission peaks towards the B1b clump, where we measured the following column densities and relative abundances: 1.3 x 10^16 cm-2 and 6.5 x 10-6 (methanol), and 7 x 10^13 cm-2 and 3.5 x 10-8 (acetaldehyde). We carried out a non-LTE LVG analysis of the observed CH3OH line: the average kinetic temperature and density of the emitting gas are Tkin = 90 K and nH2 = 4 x 10^5 cm-3, respectively. The CH3OH and CH3CHO abundance ratio towards B1b is 190, varying by less than a factor 3 throughout the whole B0-B1 structure. Conclusions: The comparison of astrochemical model predictions with the observed methanol and acetaldehyde spatial distribution does not allow to distinguish whether acetaldehyde is formed on the grain mantles or rather on the gas-phase, as its gas-phase formation, dominated by the reaction of ethyl radical (CH3CH2) with atomic oxygen, is very fast. Observations of acetaldehyde in younger shocks, e.g. 10^2 yr old, or/and of the ethyl radical, whose frequencies are not presently available, are necessary to settle the issue.
322 - B. Lefloch 2011
Previous far-infrared observations at low-angular resolution have reported the presence of water associated with low-velocity outflow shocks and protostellar envelopes. The outflow driven by the intermediate-mass class 0 protostar Cep E is among the most luminous outflows detected so far. Using the IRAM 30m telescope, we searched for and detected the para-water line emission at 183 GHz in the Cep E star-forming core. The emission arises from high-velocity gas close to the protostar, which is unresolved in the main beam of the telescope. Complementary observations at 2 resolution with the Plateau de Bure interferometer helped establish the origin of the emission detected and the physical conditions in the emitting gas. The water line profile and its spatial distribution are very similar to those of SiO. We find that the water emission arises from warm ($sim 200K$), dense ($(1-2)times 10^6cmmt$) gas, and its abundance is enhanced by one to two orders of magnitude with respect to the protostellar envelope. We detect water emission in strong shocks from the high-velocity jet at 1000 AU from the protostar. Despite the large beam size of the telescope, such emission should be detectable with Herschel.
L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ~2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher velocity shocks or repeatedly-shocked material, such as SiO and HCN. Here, we present high spatial resolution (~3) maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with CARMA. The HNCO maps are the first interferometric observations of this species in L1157. The maps show distinct differences in the chemistry within the various shocked regions in L1157B. This is further supported through constraints of the molecular abundances using the non-LTE code RADEX (Van der Tak et al. 2007). We find the east/west chemical differentiation in C2 may be explained by the contrast of the shocks interaction with either cold, pristine material or warm, previously-shocked gas, as seen in enhanced HCN abundances. In addition, the enhancement of the HNCO abundance toward the the older shock, B2, suggests the importance of high-temperature O-chemistry in shocked regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا