Do you want to publish a course? Click here

Shocked water in the Cep E protostellar outflow

291   0   0.0 ( 0 )
 Added by Bertrand Le Floch
 Publication date 2011
  fields Physics
and research's language is English
 Authors B. Lefloch




Ask ChatGPT about the research

Previous far-infrared observations at low-angular resolution have reported the presence of water associated with low-velocity outflow shocks and protostellar envelopes. The outflow driven by the intermediate-mass class 0 protostar Cep E is among the most luminous outflows detected so far. Using the IRAM 30m telescope, we searched for and detected the para-water line emission at 183 GHz in the Cep E star-forming core. The emission arises from high-velocity gas close to the protostar, which is unresolved in the main beam of the telescope. Complementary observations at 2 resolution with the Plateau de Bure interferometer helped establish the origin of the emission detected and the physical conditions in the emitting gas. The water line profile and its spatial distribution are very similar to those of SiO. We find that the water emission arises from warm ($sim 200K$), dense ($(1-2)times 10^6cmmt$) gas, and its abundance is enhanced by one to two orders of magnitude with respect to the protostellar envelope. We detect water emission in strong shocks from the high-velocity jet at 1000 AU from the protostar. Despite the large beam size of the telescope, such emission should be detectable with Herschel.



rate research

Read More

Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jets and outflows are launched, and to quantify their chemical and energetic impacts on the surrounding medium. We performed a high-spectral resolution study of the [OI]$_{rm 63 mu m}$ emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. We present observations of the OI $^3$P$_1 rightarrow$ $^3$P$_2$, OH between $^2Pi_{1/2}$ $J = 3/2$ and $J = 1/2$ at 1837.8 GHz, and CO (16-15) lines with SOFIA-GREAT at three positions in the Cep E outflow: mm (the driving protostar), BI (in the southern lobe), and BII (the terminal position in the southern lobe). The CO line is detected at all three positions. The OI line is detected in BI and BII, whereas the OH line is not detected. In BII, we identify three kinematical components in OI and CO, already detected in CO: the jet, the HH377 terminal bow-shock, and the outflow cavity. The OI column density is higher in the outflow cavity than in the jet, which itself is higher than in the terminal shock. The terminal shock is where the abundance ratio of OI to CO is the lowest (about 0.2), whereas the jet component is atomic (ratio $sim$2.7). In the jet, we compare the OI observations with shock models that successfully fit the integrated intensity of 10 CO lines: these models do not fit the OI data. The high intensity of OI emission points towards the propagation of additional dissociative or alternative FUV-irradiated shocks, where the illumination comes from the shock itself. From the sample of low-to-high mass protostellar outflows where similar observations have been performed, the effects of illumination seem to increase with the mass of the protostar.
The physical characteristics of Cepheus E (Cep E) `embedded outflow are analyzed using ISOCAM images in the v=0-0 S(5) 6.91 um and S(3) 9.66 um molecular hydrogen lines. We find that the morphology of the Cep E outflow in the ground vibrational H2 lines is similar to that of the near infrared v=1-0 2.12 um line. At these mid-IR wavelengths, we do not detect the second H2 outflow which is almost perpendicular to Cep E 2.121 um flow or traces of H2 emission along the second 12CO J = 2-1 outflow at 52 degrees angle, down to a surface brightness of 12 - 46 uJy/arcsec square. We do detect at 6.91 um the likely source of the main H2 and CO outflows, IRAS 23011+6126, and show that the source is easily seen in all IRAS bands using HiRes images. The source is not detected at 9.66 um, but we think this agrees with the interstellar extinction curve which has a minimum at 7 um, but rises a 9.7 um due to the strong absorption silicate feature, enhanced in this case by a cocoon surrounding the Class 0 object. This idea is supported by our models of the spectral energy distribution (SED) of the central object. The models assume that the main source of opacity is due to bare silicates and our best fit for the SED yields a total mass of envelope of 17 solar masses and a dust temperature of 18 K.
The isotopic ratio of nitrogen presents a wide range of values in the Solar System and in star forming system whose origin is still unclear. Chemical reactions in the gas phase are one of the possible processes that could modify the $^{14}$N/$^{15}$N ratio. We aim at investigating if and how the passage of a shock wave in the interstellar medium, can affect the relative fraction of nitrogen isotopes. The ideal place for such a study is the L1157 outflow, where several shocked clumps are present. We present the first measurement of the $^{14}$N/$^{15}$N ratio in the two shocked clumps, B1 and B0, of the protostellar outflow L1157, derived from the interferomteric maps of the H$^{13}$CN(1-0) and the HC$^{15}$N(1-0) lines. In B1, we find that the H$^{13}$CN(1-0) and HC$^{15}$N(1-0) emission traces the front of the clump, with averaged column density of $N$(H$^{13}$CN) $sim$ 7$times$10$^{12}$ cm$^{-2}$ and $N$(HC$^{15}$N) $sim$ 2$times$10$^{12}$ cm$^{-2}$. In this region the ratio H$^{13}$CN(1-0)/HC$^{15}$N(1-0) is quite uniform with an average value of $sim$ 5$pm$1. The same average value is also measured in the smaller clump B0e. Assuming the standard $^{12}$C/$^{13}$C = 68, we obtain $^{14}$N/$^{15}$N = 340$pm$70, similar to those usually found in prestellar cores and protostars. We analysed the prediction of a chemical shock model for several shock conditions and we found that the nitrogen and carbon fractionations do not vary much for the first period after the shock. The observed H$^{13}$CN/HC$^{15}$N can be reproduced by a non-dissociative, C-type shock with parameters in agreement with previous modelling of L1157-B1. Both observations and chemical models indicate that the shock propagation does not affect the nitrogen isotopic ratio that remains similar to that measured in lower temperature gas in prestellar cores and in protostellar envelopes.
103 - A.M. Titmarsh 2013
An Australia Telescope Compact Array search for 22 GHz water masers towards 6.7 GHz class II methanol masers detected in the Methanol Multibeam (MMB) survey has resulted in the detection of extremely high velocity emission from one of the sources. The water maser emission associated with this young stellar object covers a velocity span of nearly 300 km/s. The highest velocity water maser emission is red-shifted from the systemic velocity by 250 km/s, which is a new record for high-mass star formation regions. The maser is associated with a very young late O, or early B star, which may still be actively accreting matter (and driving the extreme outflow). If that is the case future observations of the kinematics of this water maser will provide a unique probe of accretion processes in the highest mass young stellar objects and test models of water maser formation.
We use the Submillimeter Array to observe, at 1.4 mm, the blue-lobe of the L1157 outflow at high spatial resolution (~ 3). We detected SiO, H_2CO, and CH_3OH lines from several molecular clumps that constitute the outflow. All three molecules were detected along the wall of the inner cavity that is supposedly related with the later ejection event. On the other hand, no emission was detected towards positions related to an old ejection episode, likely due to space filtering from the interferometer. The H_2CO and CH_3OH emission is detected only at velocities close to the systemic velocity. The spatial distributions of the H_2CO and CH_3OH are similar. These emission lines trace the U-shaped structure seen in the mid-infrared image. In contrast, the SiO emission is detected in wider velocity range with a peak at ~14 km s/s blue-shifted from the systemic velocity. The SiO emission is brightest at the B1 position, which corresponds to the apex of the U-shaped structure. There are two compact SiO clumps along the faint arc-like feature to the east of the U-shaped structure. At the B1 position, there are two velocity components; one is a compact clump with a size of ~1500 AU seen in the high-velocity and the other is an extended component with lower velocities. The kinematic structure at the B1 position is different from that expected in a single bow shock. It is likely that the high-velocity SiO clump at the B1 position is kinetically independent from the low-velocity gas. The line ratio between SiO (5--4) and SiO (2--1) suggests that the high velocity SiO clumps consist of high density gas of n ~ 10^5 - 10^6 cm^-3, which is comparable to the density of the bullets in the extremely high velocity (EHV) jets. It is likely that the high-velocity SiO clumps in L1157 have the same origin as the EHV bullets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا