No Arabic abstract
We present observations of SO and $rm SO_2$ lines toward the shocked regions along the L1157 chemically rich outflow, taken in the context of the Seeds Of Life In Space IRAM-NOrthern Extended Millimeter Array Large Program, and supported by data from Submillimeter Array and IRAM-30 m telescope at 1.1--3.6 mm wavelengths. We simultaneously analyze, for the first time, all of the brightest shocks in the blueshifted lobe, namely, B0, B1, and B2. We found the following. (1) SO and $rm SO_2$ may trace different gas, given that the large(-scale) velocity gradient analysis indicates for $rm SO_2$ a volume density ($rm 10^5text{--}10^6,cm^{-3}$) denser than that of the gas emitting in SO by a factor up to an order of magnitude. (2) Investigating the 0.1 pc scale field of view, we note a tentative gradient along the path of the precessing jet. More specifically, $rm chi({SO/SO_2})$ decreases from the B0-B1 shocks to the older B2. (3) At a linear resolution of 500--1400 au, a tentative spatial displacement between the two emitting molecules is detected, with the SO peak closer (with respect to $rm SO_2$) to the position where the recent jet is impinging on the B1 cavity wall. Our astrochemical modeling shows that the SO and $rm SO_2$ abundances evolve on timescales less than about 1000 years. Furthermore, the modeling requires high abundances ($2times10^{-6}$) of both $rm H_2S/H$ and S/H injected in the gas phase due to the shock occurrence, so pre-frozen OCS only is not enough to reproduce our new observations.
The isotopic ratio of nitrogen presents a wide range of values in the Solar System and in star forming system whose origin is still unclear. Chemical reactions in the gas phase are one of the possible processes that could modify the $^{14}$N/$^{15}$N ratio. We aim at investigating if and how the passage of a shock wave in the interstellar medium, can affect the relative fraction of nitrogen isotopes. The ideal place for such a study is the L1157 outflow, where several shocked clumps are present. We present the first measurement of the $^{14}$N/$^{15}$N ratio in the two shocked clumps, B1 and B0, of the protostellar outflow L1157, derived from the interferomteric maps of the H$^{13}$CN(1-0) and the HC$^{15}$N(1-0) lines. In B1, we find that the H$^{13}$CN(1-0) and HC$^{15}$N(1-0) emission traces the front of the clump, with averaged column density of $N$(H$^{13}$CN) $sim$ 7$times$10$^{12}$ cm$^{-2}$ and $N$(HC$^{15}$N) $sim$ 2$times$10$^{12}$ cm$^{-2}$. In this region the ratio H$^{13}$CN(1-0)/HC$^{15}$N(1-0) is quite uniform with an average value of $sim$ 5$pm$1. The same average value is also measured in the smaller clump B0e. Assuming the standard $^{12}$C/$^{13}$C = 68, we obtain $^{14}$N/$^{15}$N = 340$pm$70, similar to those usually found in prestellar cores and protostars. We analysed the prediction of a chemical shock model for several shock conditions and we found that the nitrogen and carbon fractionations do not vary much for the first period after the shock. The observed H$^{13}$CN/HC$^{15}$N can be reproduced by a non-dissociative, C-type shock with parameters in agreement with previous modelling of L1157-B1. Both observations and chemical models indicate that the shock propagation does not affect the nitrogen isotopic ratio that remains similar to that measured in lower temperature gas in prestellar cores and in protostellar envelopes.
Context. Low-mass protostars drive powerful molecular outflows that can be observed with mm and sub-mm telescopes. Various sulfuretted species are known to be bright in shocks and could be used to infer the physical and chemical conditions throughout the observed outflows. Aims. The evolution of sulfur chemistry is studied along the outflows driven by the NGC1333-IRAS4A protobinary system located in the Perseus cloud to constrain the physical and chemical processes at work in shocks. Methods. We observed various transitions from OCS, CS, SO, and SO$_2$ towards NGC1333-IRAS4A in the 1.3, 2, and 3mm bands using the IRAM NOEMA array and we interpreted the observations through the use of the Paris-Durham shock model. Results. The targeted species clearly show different spatial emission along the two outflows driven by IRAS4A. OCS is brighter on small and large scales along the south outflow driven by IRAS4A1, whereas SO$_2$ is detected rather along the outflow driven by IRAS4A2 that is extended along the north east - south west (NE-SW) direction. Column density ratio maps estimated from a rotational diagram analysis allowed us to confirm a clear gradient of the OCS/SO$_2$ column density ratio between the IRAS4A1 and IRAS4A2 outflows. SO is detected at extremely high radial velocity up to 25 km/s relative to the source velocity, clearly allowing us to distinguish the two outflows on small scales. Conclusions. The observed chemical differentiation between the two outflows of the IRAS4A system could be explained by a different chemical history. The outflow driven by IRAS4A1 is likely younger and more enriched in species initially formed in interstellar ices, such as OCS, and recently sputtered into the shock gas. In contrast, the longer and likely older outflow triggered by IRAS4A2 is more enriched in species that have a gas phase origin, such as SO$_2$.
Aim: In the past, observations of protostellar shocks have been able to set constraints on the formation route of formamide (NH2CHO), exploiting its observed spatial distribution and comparison with astrochemical model predictions. In this work, we follow the same strategy to study the case of acetaldehyde (CH3CHO). Method: To this end, we used the data obtained with the IRAM-NOEMA interferometer in the framework of the Large Program SOLIS to image the B0 and B1 shocks along the L1157 blueshifted outflow in methanol (CH3OH) and acetaldehyde line emission. Results: We imaged six CH3OH and eight CH3CHO lines which cover upper level energies up to 30 K. Both species trace the B0 molecular cavity as well as the northern B1 portion, i.e. the regions where the youngest shocks (1000 yr) occurred. The CH$_3$OH and CH$_3$CHO emission peaks towards the B1b clump, where we measured the following column densities and relative abundances: 1.3 x 10^16 cm-2 and 6.5 x 10-6 (methanol), and 7 x 10^13 cm-2 and 3.5 x 10-8 (acetaldehyde). We carried out a non-LTE LVG analysis of the observed CH3OH line: the average kinetic temperature and density of the emitting gas are Tkin = 90 K and nH2 = 4 x 10^5 cm-3, respectively. The CH3OH and CH3CHO abundance ratio towards B1b is 190, varying by less than a factor 3 throughout the whole B0-B1 structure. Conclusions: The comparison of astrochemical model predictions with the observed methanol and acetaldehyde spatial distribution does not allow to distinguish whether acetaldehyde is formed on the grain mantles or rather on the gas-phase, as its gas-phase formation, dominated by the reaction of ethyl radical (CH3CH2) with atomic oxygen, is very fast. Observations of acetaldehyde in younger shocks, e.g. 10^2 yr old, or/and of the ethyl radical, whose frequencies are not presently available, are necessary to settle the issue.
L1157-B1 is one of the outflow shocked regions along the blue-shifted outflow driven by the Class 0 protostar L1157-mm, and is an ideal laboratory to study the material ejected from the grains in very short timescales, i.e. its chemical composition is representative of the composition of the grains. We imaged $^{28}$SiO, $^{29}$SiO and $^{30}$SiO J = 2-1 emission towards L1157-B1 and B0 with the NOrthern Extended Millimeter Array (NOEMA) interferometer as part of the Seeds of Life in Space (SOLIS) large project. We present here a study of the isotopic fractionation of SiO towards L1157-B1. Furthermore, we use the high spectral resolution observations on the main isotopologue, $^{28}$SiO, to study the jet impact on the dense gas. We present here also single-dish observations obtained with the IRAM 30m telescope and Herschel-HIFI. We carried out a non-LTE analysis using a Large Velocity Gradient (LVG) code to model the single-dish observations. From our observations we can show that (i) the (2-1) transition of the main isotopologue is optically thick in L1157-B1 even at high velocities, and (ii) the [$^{29}$SiO/$^{30}$SiO] ratio is constant across the source, and consistent with the solar value of 1.5. We report the first isotopic fractionation maps of SiO in a shocked region and show the absence of a mass dependent fractionation in $^{29}$Si and $^{30}$Si across L1157-B1. A high-velocity bullet in $^{28}$SiO has been identified, showing the signature of a jet impacting on the dense gas. With the dataset presented in this paper, both interferometric and single-dish, we were able to study in great detail the gas shocked at the B1a position and its surrounding gas.
The SOLIS (Seeds Of Life In Space) IRAM/NOEMA Large Program aims at studying a set of crucial complex organic molecules in a sample of sources, with well-known physical structure, covering the various phases of Solar-type star formation. One representative object of the transition from the prestellar core to the protostar phases has been observed toward the Very Low Luminosity Object (VeLLO) called L1521F. This type of source is important to study to make the link between prestellar cores and Class 0 sources and also to constrain the chemical evolution during the process of star formation. Two frequency windows (81.6-82.6 GHz and 96.65-97.65 GHz) were used to observe the emission from several complex organics toward the L1521F VeLLO. Only 2 transitions of methanol (A+, E2) have been detected in the narrow window centered at 96.7 GHz (with an upper limit on E1) in a very compact emission blob (~7 corresponding to ~1000au) toward the NE of the L1521F protostar. The CS 2-1 transition is also detected within the WideX bandwidth. Consistently, with what has been found in prestellar cores, the methanol emission appears ~1000au away from the dust peak. The location of the methanol blob coincides with one of the filaments previously reported in the literature. The Tex of the gas inferred from methanol is (10$pm$2) K, while the H2 gas density (estimated from the detected CS 2-1 emission and previous CS 5-4 ALMA obs.) is a factor >25 higher than the density in the surrounding environment (n(H2) >10$^{7}$ cm$^{-3}$). From its compactness, low excitation temperature and high gas density, we suggest that the methanol emission detected with NOEMA is either a cold and dense shock-induced blob, recently formed ($leq$ few hundred years) by infalling gas or a cold and dense fragment that may have just been formed as a result of the intense gas dynamics found within the L1521F VeLLO system.