No Arabic abstract
In thermodynamics, entropy production and work quantify irreversibility and the consumption of useful energy, respectively, when a system is driven out of equilibrium. For quantum systems, these quantities can be identified at the stochastic level by unravelling the systems evolution in terms of quantum jump trajectories. We here derive a general formula for computing the joint statistics of work and entropy production in Markovian driven quantum systems, whose instantaneous steady-states are of Gibbs form. If the driven system remains close to the instantaneous Gibbs state at all times, we show that the corresponding two-variable cumulant generating function implies a joint detailed fluctuation theorem so long as detailed balance is satisfied. As a corollary, we derive a modified fluctuation-dissipation relation (FDR) for the entropy production alone, applicable to transitions between arbitrary steady-states, and for systems that violate detailed balance. This FDR contains a term arising from genuinely quantum fluctuations, and extends an analogous relation from classical thermodynamics to the quantum regime.
Employing the stochastic wave function method, we study quantum features of stochastic entropy production in nonequilibrium processes of open systems. It is demonstarted that continuous measurements on the environment introduce an additional, non-thermal contribution to the entropy flux, which is shown to be a direct consequence of quantum fluctuations. These features lead to a quantum definition of single trajectory entropy contributions, which accounts for the difference between classical and quantum trajectories and results in a quantum correction to the standard form of the integral fluctuation theorem.
We employ a quantum trajectory approach to characterize synchronization and phase-locking between open quantum systems in nonequilibrium steady states. We exemplify our proposal for the paradigmatic case of two quantum Van der Pol oscillators interacting through dissipative coupling. We show the deep impact of synchronization on the statistics of phase-locking indicators and other correlation measures defined for single trajectories, spotting a link between the presence of synchronization and the emergence of large tails in the probability distribution for the entanglement along trajectories. Our results shed new light on fundamental issues regarding quantum synchronization providing new methods for its precise quantification.
We develop a martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponential martingale and a purely quantum term, both obeying integral fluctuation theorems. An important consequence of this approach is the derivation of a set of genuine universal results for stopping-time and infimum statistics of stochastic entropy production. Finally we complement the general formalism with numerical simulations of a qubit system.
Recent years have seen an enormously revived interest in the study of thermodynamic notions in the quantum regime. This applies both to the study of notions of work extraction in thermal machines in the quantum regime, as well as to questions of equilibration and thermalisation of interacting quantum many-body systems as such. In this work we bring together these two lines of research by studying work extraction in a closed system that undergoes a sequence of quenches and equilibration steps concomitant with free evolutions. In this way, we incorporate an important insight from the study of the dynamics of quantum many body systems: the evolution of closed systems is expected to be well described, for relevant observables and most times, by a suitable equilibrium state. We will consider three kinds of equilibration, namely to (i) the time averaged state, (ii) the Gibbs ensemble and (iii) the generalised Gibbs ensemble (GGE), reflecting further constants of motion in integrable models. For each effective description, we investigate notions of entropy production, the validity of the minimal work principle and properties of optimal work extraction protocols. While we keep the discussion general, much room is dedicated to the discussion of paradigmatic non-interacting fermionic quantum many-body systems, for which we identify significant differences with respect to the role of the minimal work principle. Our work not only has implications for experiments with cold atoms, but also can be viewed as suggesting a mindset for quantum thermodynamics where the role of the external heat baths is instead played by the system itself, with its internal degrees of freedom bringing coarse-grained observables to equilibrium.
The entropy production in dissipative processes is the essence of the arrow of time and the second law of thermodynamics. For dissipation of quantum systems, it was recently shown that the entropy production contains indeed two contributions: a classical one and a quantum one. Here we show that for degenerate (or near-degenerate) quantum systems there are additional quantum contributions which, remarkably, can become negative. Furthermore, such negative contributions are related to significant changes in the ongoing thermodynamics. This includes phenomena such as generation of coherences between degenerate energy levels (called horizontal coherences), alteration of energy exchanges and, last but not least, reversal of the natural convergence of the populations toward the thermal equilibrium state. Going further, we establish a complementarity relation between horizontal coherences and population convergence, particularly enlightening for understanding heat flow reversals. Conservation laws of the different types of coherences are derived. Some consequences for thermal machines and resource theory of coherence are suggested.