Do you want to publish a course? Click here

Work and entropy production in generalised Gibbs ensembles

107   0   0.0 ( 0 )
 Added by Jens Eisert
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent years have seen an enormously revived interest in the study of thermodynamic notions in the quantum regime. This applies both to the study of notions of work extraction in thermal machines in the quantum regime, as well as to questions of equilibration and thermalisation of interacting quantum many-body systems as such. In this work we bring together these two lines of research by studying work extraction in a closed system that undergoes a sequence of quenches and equilibration steps concomitant with free evolutions. In this way, we incorporate an important insight from the study of the dynamics of quantum many body systems: the evolution of closed systems is expected to be well described, for relevant observables and most times, by a suitable equilibrium state. We will consider three kinds of equilibration, namely to (i) the time averaged state, (ii) the Gibbs ensemble and (iii) the generalised Gibbs ensemble (GGE), reflecting further constants of motion in integrable models. For each effective description, we investigate notions of entropy production, the validity of the minimal work principle and properties of optimal work extraction protocols. While we keep the discussion general, much room is dedicated to the discussion of paradigmatic non-interacting fermionic quantum many-body systems, for which we identify significant differences with respect to the role of the minimal work principle. Our work not only has implications for experiments with cold atoms, but also can be viewed as suggesting a mindset for quantum thermodynamics where the role of the external heat baths is instead played by the system itself, with its internal degrees of freedom bringing coarse-grained observables to equilibrium.



rate research

Read More

The concept of generalized Gibbs ensembles (GGEs) has been introduced to describe steady states of integrable models. Recent advances show that GGEs can also be stabilized in nearly integrable quantum systems when driven by external fields and open. Here, we present a weakly dissipative dynamics that drives towards a steady-state GGE and is realistic to implement in systems of trapped ions. We outline the engineering of the desired dissipation by a combination of couplings which can be realized with ion-trap setups and discuss the experimental observables needed to detect a deviation from a thermal state. We present a novel mixed-species motional mode engineering technique in an array of micro-traps and demonstrate the possibility to use sympathetic cooling to construct many-body dissipators. Our work provides a blueprint for experimental observation of GGEs in open systems and opens a new avenue for quantum simulation of driven-dissipative quantum many-body problems.
We investigate the detailed properties of Observational entropy, introduced by v{S}afr{a}nek et al. [Phys. Rev. A 99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve multiple coarse-grainings, even those that do not commute with each other, without losing any of its properties. It is well-defined out of equilibrium, and for some coarse-grainings it generically rises to the correct thermodynamic value even in a genuinely isolated quantum system. The quantity contains several other entropy definitions as special cases, it has interesting information-theoretic interpretations, and mathematical properties -- such as extensivity and upper and lower bounds -- suitable for an entropy. Here we describe and provide proofs for many of its properties, discuss its interpretation and connection to other quantities, and provide numerous simulations and analytic arguments supporting the claims of its relationship to thermodynamic entropy. This quantity may thus provide a clear and well-defined foundation on which to build a satisfactory understanding of the second thermodynamical law in quantum mechanics.
We extend classical coarse-grained entropy, commonly used in many branches of physics, to the quantum realm. We find two coarse-grainings, one using measurements of local particle numbers and then total energy, and the second using local energy measurements, which lead to an entropy that is defined outside of equilibrium, is in accord with the thermodynamic entropy for equilibrium systems, and reaches the thermodynamic entropy in the long-time limit, even in genuinely isolated quantum systems. This answers the long-standing conceptual problem, as to which entropy is relevant for the formulation of the second thermodynamic law in closed quantum systems. This entropy could be in principle measured, especially now that experiments on such systems are becoming feasible.
In the past several years, observational entropy has been developed as both a (time-dependent) quantum generalization of Boltzmann entropy, and as a rather general framework to encompass classical and quantum equilibrium and non-equilibrium coarse-grained entropy. In this paper we review the construction, interpretation, most important properties, and some applications of this framework. The treatment is self-contained and relatively pedagogical, aimed at a broad class of researchers.
In thermodynamics, entropy production and work quantify irreversibility and the consumption of useful energy, respectively, when a system is driven out of equilibrium. For quantum systems, these quantities can be identified at the stochastic level by unravelling the systems evolution in terms of quantum jump trajectories. We here derive a general formula for computing the joint statistics of work and entropy production in Markovian driven quantum systems, whose instantaneous steady-states are of Gibbs form. If the driven system remains close to the instantaneous Gibbs state at all times, we show that the corresponding two-variable cumulant generating function implies a joint detailed fluctuation theorem so long as detailed balance is satisfied. As a corollary, we derive a modified fluctuation-dissipation relation (FDR) for the entropy production alone, applicable to transitions between arbitrary steady-states, and for systems that violate detailed balance. This FDR contains a term arising from genuinely quantum fluctuations, and extends an analogous relation from classical thermodynamics to the quantum regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا