No Arabic abstract
The entropy production in dissipative processes is the essence of the arrow of time and the second law of thermodynamics. For dissipation of quantum systems, it was recently shown that the entropy production contains indeed two contributions: a classical one and a quantum one. Here we show that for degenerate (or near-degenerate) quantum systems there are additional quantum contributions which, remarkably, can become negative. Furthermore, such negative contributions are related to significant changes in the ongoing thermodynamics. This includes phenomena such as generation of coherences between degenerate energy levels (called horizontal coherences), alteration of energy exchanges and, last but not least, reversal of the natural convergence of the populations toward the thermal equilibrium state. Going further, we establish a complementarity relation between horizontal coherences and population convergence, particularly enlightening for understanding heat flow reversals. Conservation laws of the different types of coherences are derived. Some consequences for thermal machines and resource theory of coherence are suggested.
The entropy produced when a quantum system is driven away from equilibrium can be decomposed in two parts, one related with populations and the other with quantum coherences. The latter is usually based on the so-called relative entropy of coherence, a widely used quantifier in quantum resource theories. In this paper we argue that, despite satisfying fluctuation theorems and having a clear resource-theoretic interpretation, this splitting has shortcomings. First, it predicts that at low temperatures the entropy production will always be dominated by the classical term, irrespective of the quantum nature of the process. Second, for infinitesimal quenches, the radius of convergence diverges exponentially as the temperature decreases, rendering the functions non-analytic. Motivated by this, we provide here a complementary approach, where the entropy production is split in a way such that the contributions from populations and coherences are written in terms of a thermal state of a specially dephased Hamiltonian. The physical interpretation of our proposal is discussed in detail. We also contrast the two approaches by studying work protocols in a transverse field Ising chain, and a macrospin of varying dimension.
We develop a martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponential martingale and a purely quantum term, both obeying integral fluctuation theorems. An important consequence of this approach is the derivation of a set of genuine universal results for stopping-time and infimum statistics of stochastic entropy production. Finally we complement the general formalism with numerical simulations of a qubit system.
Employing the stochastic wave function method, we study quantum features of stochastic entropy production in nonequilibrium processes of open systems. It is demonstarted that continuous measurements on the environment introduce an additional, non-thermal contribution to the entropy flux, which is shown to be a direct consequence of quantum fluctuations. These features lead to a quantum definition of single trajectory entropy contributions, which accounts for the difference between classical and quantum trajectories and results in a quantum correction to the standard form of the integral fluctuation theorem.
Some of the oldest and most important applications of thermodynamics are operations of refrigeration as well as production of useful energy. Part of the efforts to understand and develop thermodynamics in the quantum regime have been focusing on harnessing quantum effects to such operations. In this review we present the recent developments regarding the role of quantum coherences in the performances of thermal machines --the devices realising the above thermodynamic operations. While this is known to be an intricate subject, in part because being largely model-dependent, the review of the recent results allow us to identify some general tendencies and to suggest some future directions.
The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo, a phenomenon known as dynamical phase transition (DPT). Despite considerable research into the underlying mechanisms behind this phenomenon, several open questions still remain. Motivated by this, we put forth a detailed study of DPTs from the perspective of quantum phase space and entropy production, a key concept in thermodynamics. We focus on the Lipkin-Meshkov-Glick model and use spin coherent states to construct the corresponding Husimi-$Q$ quasi-probability distribution. The entropy of the $Q$-function, known as Wehrl entropy, provides a measure of the coarse-grained dynamics of the system and, therefore, evolves non-trivially even for closed systems. We show that critical quenches lead to a quasi-monotonic growth of the Wehrl entropy in time, combined with small oscillations. The former reflects the information scrambling characteristic of these transitions and serves as a measure of entropy production. On the other hand, the small oscillations imply negative entropy production rates and, therefore, signal the recurrences of the Loschmidt echo. Finally, we also study a Gaussification of the model based on a modified Holstein-Primakoff approximation. This allows us to identify the relative contribution of the low energy sector to the emergence of DPTs. The results presented in this article are relevant not only from the dynamical quantum phase transition perspective, but also for the field of quantum thermodynamics, since they point out that the Wehrl entropy can be used as a viable measure of entropy production.