Do you want to publish a course? Click here

The Secretary Problem with Independent Sampling

67   0   0.0 ( 0 )
 Added by Tim Oosterwijk
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In the secretary problem we are faced with an online sequence of elements with values. Upon seeing an element we have to make an irrevocable take-it-or-leave-it decision. The goal is to maximize the probability of picking the element of maximum value. The most classic version of the problem is that in which the elements arrive in random order and their values are arbitrary. However, by varying the available information, new interesting problems arise. Also the case in which the arrival order is adversarial instead of random leads to interesting variants that have been considered in the literature. In this paper we study both the random order and adversarial order secretary problems with an additional twist. The values are arbitrary, but before starting the online sequence we independently sample each element with a fixed probability $p$. The sampled elements become our information or history set and the game is played over the remaining elements. We call these problems the random order secretary problem with $p$-sampling (ROS$p$ for short) and the adversarial order secretary problem with $p$-sampling (AOS$p$ for short). Our main result is to obtain best possible algorithms for both problems and all values of $p$. As $p$ grows to 1 the obtained guarantees converge to the optimal guarantees in the full information case. In the adversarial order setting, the best possible algorithm turns out to be a simple fixed threshold algorithm in which the optimal threshold is a function of $p$ only. In the random order setting we prove that the best possible algorithm is characterized by a fixed sequence of time thresholds, dictating at which point in time we should start accepting a value that is both a maximum of the online sequence and has a given ranking within the sampled elements.



rate research

Read More

In the classical secretary problem, one attempts to find the maximum of an unknown and unlearnable distribution through sequential search. In many real-world searches, however, distributions are not entirely unknown and can be learned through experience. To investigate learning in such a repeated secretary problem we conduct a large-scale behavioral experiment in which people search repeatedly from fixed distributions. In contrast to prior investigations that find no evidence for learning in the classical scenario, in the repeated setting we observe substantial learning resulting in near-optimal stopping behavior. We conduct a Bayesian comparison of multiple behavioral models which shows that participants behavior is best described by a class of threshold-based models that contains the theoretically optimal strategy. Fitting such a threshold-based model to data reveals players estimated thresholds to be surprisingly close to the optimal thresholds after only a small number of games.
We study secretary problems in settings with multiple agents. In the standard secretary problem, a sequence of arbitrary awards arrive online, in a random order, and a single decision maker makes an immediate and irrevocable decision whether to accept each award upon its arrival. The requirement to make immediate decisions arises in many cases due to an implicit assumption regarding competition. Namely, if the decision maker does not take the offered award immediately, it will be taken by someone else. The novelty in this paper is in introducing a multi-agent model in which the competition is endogenous. In our model, multiple agents compete over the arriving awards, but the decisions need not be immediate; instead, agents may select previous awards as long as they are available (i.e., not taken by another agent). If an award is selected by multiple agents, ties are broken either randomly or according to a global ranking. This induces a multi-agent game in which the time of selection is not enforced by the rules of the games, rather it is an important component of the agents strategy. We study the structure and performance of equilibria in this game. For random tie breaking, we characterize the equilibria of the game, and show that the expected social welfare in equilibrium is nearly optimal, despite competition among the agents. For ranked tie breaking, we give a full characterization of equilibria in the 3-agent game, and show that as the number of agents grows, the winning probability of every agent under non-immediate selections approaches her winning probability under immediate selections.
We consider the online problem in which an intermediary trades identical items with a sequence of n buyers and n sellers, each of unit demand. We assume that the values of the traders are selected by an adversary and the sequence is randomly permuted. We give competitive algorithms for two objectives: welfare and gain-from-trade.
Martin Weitzmans Pandoras problem furnishes the mathematical basis for optimal search theory in economics. Nearly 40 years later, Laura Doval introduced a version of the problem in which the searcher is not obligated to pay the cost of inspecting an alternatives value before selecting it. Unlike the original Pandoras problem, the version with nonobligatory inspection cannot be solved optimally by any simple ranking-based policy, and it is unknown whether there exists any polynomial-time algorithm to compute the optimal policy. This motivates the study of approximately optimal policies that are simple and computationally efficient. In this work we provide the first non-trivial approximation guarantees for this problem. We introduce a family of committing policies such that it is computationally easy to find and implement the optimal committing policy. We prove that the optimal committing policy is guaranteed to approximate the fully optimal policy within a $1-frac1e = 0.63ldots$ factor, and for the special case of two boxes we improve this factor to 4/5 and show that this approximation is tight for the class of committing policies.
The Pandoras Box Problem, originally formalized by Weitzman in 1979, models selection from set of random, alternative options, when evaluation is costly. This includes, for example, the problem of hiring a skilled worker, where only one hire can be made, but the evaluation of each candidate is an expensive procedure. Weitzman showed that the Pandoras Box Problem admits an elegant, simple solution, where the options are considered in decreasing order of reservation value,i.e., the value that reduces to zero the expected marginal gain for opening the box. We study for the first time this problem when order - or precedence - constraints are imposed between the boxes. We show that, despite the difficulty of defining reservation values for the boxes which take into account both in-depth and in-breath exploration of the various options, greedy optimal strategies exist and can be efficiently computed for tree-like order constraints. We also prove that finding approximately optimal adaptive search strategies is NP-hard when certain matroid constraints are used to further restrict the set of boxes which may be opened, or when the order constraints are given as reachability constraints on a DAG. We complement the above result by giving approximate adaptive search strategies based on a connection between optimal adaptive strategies and non-adaptive strategies with bounded adaptivity gap for a carefully relaxed version of the problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا