Do you want to publish a course? Click here

On a Competitive Secretary Problem with Deferred Selections

65   0   0.0 ( 0 )
 Added by Tomer Ezra
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study secretary problems in settings with multiple agents. In the standard secretary problem, a sequence of arbitrary awards arrive online, in a random order, and a single decision maker makes an immediate and irrevocable decision whether to accept each award upon its arrival. The requirement to make immediate decisions arises in many cases due to an implicit assumption regarding competition. Namely, if the decision maker does not take the offered award immediately, it will be taken by someone else. The novelty in this paper is in introducing a multi-agent model in which the competition is endogenous. In our model, multiple agents compete over the arriving awards, but the decisions need not be immediate; instead, agents may select previous awards as long as they are available (i.e., not taken by another agent). If an award is selected by multiple agents, ties are broken either randomly or according to a global ranking. This induces a multi-agent game in which the time of selection is not enforced by the rules of the games, rather it is an important component of the agents strategy. We study the structure and performance of equilibria in this game. For random tie breaking, we characterize the equilibria of the game, and show that the expected social welfare in equilibrium is nearly optimal, despite competition among the agents. For ranked tie breaking, we give a full characterization of equilibria in the 3-agent game, and show that as the number of agents grows, the winning probability of every agent under non-immediate selections approaches her winning probability under immediate selections.



rate research

Read More

In the secretary problem we are faced with an online sequence of elements with values. Upon seeing an element we have to make an irrevocable take-it-or-leave-it decision. The goal is to maximize the probability of picking the element of maximum value. The most classic version of the problem is that in which the elements arrive in random order and their values are arbitrary. However, by varying the available information, new interesting problems arise. Also the case in which the arrival order is adversarial instead of random leads to interesting variants that have been considered in the literature. In this paper we study both the random order and adversarial order secretary problems with an additional twist. The values are arbitrary, but before starting the online sequence we independently sample each element with a fixed probability $p$. The sampled elements become our information or history set and the game is played over the remaining elements. We call these problems the random order secretary problem with $p$-sampling (ROS$p$ for short) and the adversarial order secretary problem with $p$-sampling (AOS$p$ for short). Our main result is to obtain best possible algorithms for both problems and all values of $p$. As $p$ grows to 1 the obtained guarantees converge to the optimal guarantees in the full information case. In the adversarial order setting, the best possible algorithm turns out to be a simple fixed threshold algorithm in which the optimal threshold is a function of $p$ only. In the random order setting we prove that the best possible algorithm is characterized by a fixed sequence of time thresholds, dictating at which point in time we should start accepting a value that is both a maximum of the online sequence and has a given ranking within the sampled elements.
We consider the online problem in which an intermediary trades identical items with a sequence of n buyers and n sellers, each of unit demand. We assume that the values of the traders are selected by an adversary and the sequence is randomly permuted. We give competitive algorithms for two objectives: welfare and gain-from-trade.
In the classical secretary problem, one attempts to find the maximum of an unknown and unlearnable distribution through sequential search. In many real-world searches, however, distributions are not entirely unknown and can be learned through experience. To investigate learning in such a repeated secretary problem we conduct a large-scale behavioral experiment in which people search repeatedly from fixed distributions. In contrast to prior investigations that find no evidence for learning in the classical scenario, in the repeated setting we observe substantial learning resulting in near-optimal stopping behavior. We conduct a Bayesian comparison of multiple behavioral models which shows that participants behavior is best described by a class of threshold-based models that contains the theoretically optimal strategy. Fitting such a threshold-based model to data reveals players estimated thresholds to be surprisingly close to the optimal thresholds after only a small number of games.
This paper proposes the Potluck Problem as a model for the behavior of independent producers and consumers under standard economic assumptions, as a problem of resource allocation in a multi-agent system in which there is no explicit communication among the agents.
We study the outcome of deferred acceptance when prospective medical residents can only apply to a limited set of hospitals. This limitation requires residents to make a strategic choice about the quality of hospitals they apply to. Through a mix of theoretical and experimental results, we study the effect of this strategic choice on the preferences submitted by participants, as well as on the overall welfare. We find that residents choices in our model mimic the behavior observed in real systems where individuals apply to a mix of positions consisting mostly of places where they are reasonably likely to get accepted, as well as a few reach applications to hospitals of very high quality, and a few safe applications to hospitals of lower than their expected level. Surprisingly, the number of such safe applications is not monotone in the number of allowed applications. We also find that selfish behavior can hurt social welfare, but the deterioration of overall welfare is very minimal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا