Do you want to publish a course? Click here

Learning Deep Multimodal Feature Representation with Asymmetric Multi-layer Fusion

89   0   0.0 ( 0 )
 Added by Yikai Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose a compact and effective framework to fuse multimodal features at multiple layers in a single network. The framework consists of two innovative fusion schemes. Firstly, unlike existing multimodal methods that necessitate individual encoders for different modalities, we verify that multimodal features can be learnt within a shared single network by merely maintaining modality-specific batch normalization layers in the encoder, which also enables implicit fusion via joint feature representation learning. Secondly, we propose a bidirectional multi-layer fusion scheme, where multimodal features can be exploited progressively. To take advantage of such scheme, we introduce two asymmetric fusion operations including channel shuffle and pixel shift, which learn different fused features with respect to different fusion directions. These two operations are parameter-free and strengthen the multimodal feature interactions across channels as well as enhance the spatial feature discrimination within channels. We conduct extensive experiments on semantic segmentation and image translation tasks, based on three publicly available datasets covering diverse modalities. Results indicate that our proposed framework is general, compact and is superior to state-of-the-art fusion frameworks.

rate research

Read More

In recent years, Deep Learning has been successfully applied to multimodal learning problems, with the aim of learning useful joint representations in data fusion applications. When the available modalities consist of time series data such as video, audio and sensor signals, it becomes imperative to consider their temporal structure during the fusion process. In this paper, we propose the Correlational Recurrent Neural Network (CorrRNN), a novel temporal fusion model for fusing multiple input modalities that are inherently temporal in nature. Key features of our proposed model include: (i) simultaneous learning of the joint representation and temporal dependencies between modalities, (ii) use of multiple loss terms in the objective function, including a maximum correlation loss term to enhance learning of cross-modal information, and (iii) the use of an attention model to dynamically adjust the contribution of different input modalities to the joint representation. We validate our model via experimentation on two different tasks: video- and sensor-based activity classification, and audio-visual speech recognition. We empirically analyze the contributions of different components of the proposed CorrRNN model, and demonstrate its robustness, effectiveness and state-of-the-art performance on multiple datasets.
Scene parsing from images is a fundamental yet challenging problem in visual content understanding. In this dense prediction task, the parsing model assigns every pixel to a categorical label, which requires the contextual information of adjacent image patches. So the challenge for this learning task is to simultaneously describe the geometric and semantic properties of objects or a scene. In this paper, we explore the effective use of multi-layer feature outputs of the deep parsing networks for spatial-semantic consistency by designing a novel feature aggregation module to generate the appropriate global representation prior, to improve the discriminative power of features. The proposed module can auto-select the intermediate visual features to correlate the spatial and semantic information. At the same time, the multiple skip connections form a strong supervision, making the deep parsing network easy to train. Extensive experiments on four public scene parsing datasets prove that the deep parsing network equipped with the proposed feature aggregation module can achieve very promising results.
Deep multimodal fusion by using multiple sources of data for classification or regression has exhibited a clear advantage over the unimodal counterpart on various applications. Yet, current methods including aggregation-based and alignment-based fusion are still inadequate in balancing the trade-off between inter-modal fusion and intra-modal processing, incurring a bottleneck of performance improvement. To this end, this paper proposes Channel-Exchanging-Network (CEN), a parameter-free multimodal fusion framework that dynamically exchanges channels between sub-networks of different modalities. Specifically, the channel exchanging process is self-guided by individual channel importance that is measured by the magnitude of Batch-Normalization (BN) scaling factor during training. The validity of such exchanging process is also guaranteed by sharing convolutional filters yet keeping separate BN layers across modalities, which, as an add-on benefit, allows our multimodal architecture to be almost as compact as a unimodal network. Extensive experiments on semantic segmentation via RGB-D data and image translation through multi-domain input verify the effectiveness of our CEN compared to current state-of-the-art methods. Detailed ablation studies have also been carried out, which provably affirm the advantage of each component we propose. Our code is available at https://github.com/yikaiw/CEN.
In this paper, we propose an end-to-end speech recognition network based on Nvidias previous QuartzNet model. We try to promote the model performance, and design three components: (1) Multi-Resolution Convolution Module, replaces the original 1D time-channel separable convolution with multi-stream convolutions. Each stream has a unique dilated stride on convolutional operations. (2) Channel-Wise Attention Module, calculates the attention weight of each convolutional stream by spatial channel-wise pooling. (3) Multi-Layer Feature Fusion Module, reweights each convolutional block by global multi-layer feature maps. Our experiments demonstrate that Multi-QuartzNet model achieves CER 6.77% on AISHELL-1 data set, which outperforms original QuartzNet and is close to state-of-art result.
True understanding of videos comes from a joint analysis of all its modalities: the video frames, the audio track, and any accompanying text such as closed captions. We present a way to learn a compact multimodal feature representation that encodes all these modalities. Our model parameters are learned through a proxy task of inferring the temporal ordering of a set of unordered videos in a timeline. To this end, we create a new multimodal dataset for temporal ordering that consists of approximately 30K scenes (2-6 clips per scene) based on the Large Scale Movie Description Challenge. We analyze and evaluate the individual and joint modalities on three challenging tasks: (i) inferring the temporal ordering of a set of videos; and (ii) action recognition. We demonstrate empirically that multimodal representations are indeed complementary, and can play a key role in improving the performance of many applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا