Do you want to publish a course? Click here

Single germanium vacancy centres in nanodiamonds with bulk-like spectral stability

149   0   0.0 ( 0 )
 Added by Mackrine Nahra
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the success of group IV colour centres in nanodiamonds (NDs) for hybrid technology requiring a single photon source, we study single germanium-vacancy (GeV$^-$) centres in NDs at room temperature with size rangingfrom 10 to 50 nm and with remarkable spectral properties. We characterize their zero-phonon line (ZPL), study their internal population dynamics and compare their emission properties in the framework of a three level model with intensity dependent de-shelving. Furthermore, we characterize their lifetime, polarization and brightness. We find amaximum photon emission count rate of 1.6 MHz at saturation. We also report a polarization visibility of 92% from the fluorescence light, which potentially makes GeV$^-$ centres good candidates for quantum key distribution (QKD)requiring polarized single photons. We show that the GeV$^-$ in NDs presented in this work have a comparable spectral stability compared to their bulk counterpart which is needed for future applications using NDs.



rate research

Read More

The confluence of quantum physics and biology is driving a new generation of quantum-based sensing and imaging technology capable of harnessing the power of quantum effects to provide tools to understand the fundamental processes of life. One of the most promising systems in this area is the nitrogen-vacancy centre in diamond - a natural spin qubit which remarkably has all the right attributes for nanoscale sensing in ambient biological conditions. Typically the nitrogen-vacancy qubits are fixed in tightly controlled/isolated experimental conditions. In this work quantum control principles of nitrogen-vacancy magnetometry are developed for a randomly diffusing diamond nanocrystal. We find that the accumulation of geometric phases, due to the rotation of the nanodiamond plays a crucial role in the application of a diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show that a freely diffusing nanodiamond can offer real-time information about local magnetic fields and its own rotational behaviour, beyond continuous optically detected magnetic resonance monitoring, in parallel with operation as a fluorescent biomarker.
We report on the isolation of single SiV$^-$ centers in nanodiamonds. We observe the fine-structure of single SiV$^-$ center with improved inhomogeneous ensemble linewidth below the excited state splitting, stable optical transitions, good polarization contrast and excellent spectral stability under resonant excitation. Based on our experimental results we elaborate an analytical strain model where we extract the ratio between strain coefficients of excited and ground states as well the intrinsic zero-strain spin-orbit splittings. The observed strain values are as low as best values in low-strain bulk diamond. We achieve our results by means of H-plasma treatment of the diamond surface and in combination with resonant and off-resonant excitation. Our work paves the way for indistinguishable, single photon emission. Furthermore, we demonstrate controlled nano-manipulation via atomic force microscope cantilever of 1D- and 2D-alignments with a so-far unreached accuracy of about 10nm, as well as new tools including dipole rotation and cluster decomposition. Combined, our results show the potential to utilize SiV$^-$ centers in nanodiamonds for the controlled interfacing via optical coupling of individually well-isolated atoms for bottom-up assemblies of complex quantum systems.
We study single silicon vacancy (SiV) centres in chemical vapour deposition (CVD) nanodiamonds on iridium as well as an ensemble of SiV centres in a high quality, low stress CVD diamond film by using temperature dependent luminescence spectroscopy in the temperature range 5-295 K. We investigate in detail the temperature dependent fine structure of the zero-phonon-line (ZPL) of the SiV centres. The ZPL transition is affected by inhomogeneous as well as temperature dependent homogeneous broadening and blue shifts by about 20 cm-1 upon cooling from room temperature to 5 K. We employ excitation power dependent g(2) measurements to explore the temperature dependent internal population dynamics of single SiV centres and infer almost temperature independent dynamics.
218 - J. Twamley , S. D. Barrett 2009
Circuit-QED has demonstrated very strong coupling between individual microwave photons trapped in a superconducting coplanar resonator and nearby superconducting qubits. In this work we show how, by designing a novel interconnect, one can strongly connect the superconducting resonator, via a magnetic interaction, to a small number (perhaps single), of electronic spins. By choosing the electronic spin to be within a Nitrogen Vacancy centre in diamond one can perform optical readout, polarization and control of this electron spin using microwave and radio frequency irradiation. More importantly, by utilising Nitrogen Vacancy centres with nearby 13C nuclei, using this interconnect, one has the potential build a quantum device where the nuclear spin qubits are connected over centimeter distances via the Nitrogen Vacancy electronic spins interacting through the superconducting bus.
Optically interfaced spins in the solid promise scalable quantum networks. Robust and reliable optical properties have so far been restricted to systems with inversion symmetry. Here, we release this stringent constraint by demonstrating outstanding optical and spin properties of single silicon vacancy centres in silicon carbide. Despite the lack of inversion symmetry, the systems particular wave function symmetry decouples its optical properties from magnetic and electric fields, as well as from local strain. This provides a high-fidelity spin-to-photon interface with exceptionally stable and narrow optical transitions, low inhomogeneous broadening, and a large fraction of resonantly emitted photons. Further, the weak spin-phonon coupling results in electron spin coherence times comparable with nitrogen-vacancy centres in diamond. This allows us to demonstrate coherent hyperfine coupling to single nuclear spins, which can be exploited as qubit memories. Our findings promise quantum network applications using integrated semiconductor-based spin-to-photon interfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا