Do you want to publish a course? Click here

Clustering Contextualized Representations of Text for Unsupervised Syntax Induction

85   0   0.0 ( 0 )
 Added by Vikram Gupta
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We explore clustering of contextualized text representations for two unsupervised syntax induction tasks: part of speech induction (POSI) and constituency labelling (CoLab). We propose a deep embedded clustering approach which jointly transforms these representations into a lower dimension cluster friendly space and clusters them. We further enhance these representations by augmenting them with task-specific representations. We also explore the effectiveness of multilingual representations for different tasks and languages. With this work, we establish the first strong baselines for unsupervised syntax induction using contextualized text representations. We report competitive performance on 45-tag POSI, state-of-the-art performance on 12-tag POSI across 10 languages, and competitive results on CoLab.



rate research

Read More

Contextualized word representations have proven useful for various natural language processing tasks. However, it remains unclear to what extent these representations can cover hand-coded semantic information such as semantic frames, which specify the semantic role of the arguments associated with a predicate. In this paper, we focus on verbs that evoke different frames depending on the context, and we investigate how well contextualized word representations can recognize the difference of frames that the same verb evokes. We also explore which types of representation are suitable for semantic frame induction. In our experiments, we compare seven different contextualized word representations for two English frame-semantic resources, FrameNet and PropBank. We demonstrate that several contextualized word representations, especially BERT and its variants, are considerably informative for semantic frame induction. Furthermore, we examine the extent to which the contextualized representation of a verb can estimate the number of frames that the verb can evoke.
Existing text style transfer (TST) methods rely on style classifiers to disentangle the texts content and style attributes for text style transfer. While the style classifier plays a critical role in existing TST methods, there is no known investigation on its effect on the TST methods. In this paper, we conduct an empirical study on the limitations of the style classifiers used in existing TST methods. We demonstrate that the existing style classifiers cannot learn sentence syntax effectively and ultimately worsen existing TST models performance. To address this issue, we propose a novel Syntax-Aware Controllable Generation (SACG) model, which includes a syntax-aware style classifier that ensures learned style latent representations effectively capture the syntax information for TST. Through extensive experiments on two popular TST tasks, we show that our proposed method significantly outperforms the state-of-the-art methods. Our case studies have also demonstrated SACGs ability to generate fluent target-style sentences that preserved the original content.
Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a small support set at the sample-wise level. However, this sample-wise comparison may be severely disturbed by the various expressions in the same class. Therefore, we should be able to learn a general representation of each class in the support set and then compare it to new queries. In this paper, we propose a novel Induction Network to learn such a generalized class-wise representation, by innovatively leveraging the dynamic routing algorithm in meta-learning. In this way, we find the model is able to induce and generalize better. We evaluate the proposed model on a well-studied sentiment classification dataset (English) and a real-world dialogue intent classification dataset (Chinese). Experiment results show that on both datasets, the proposed model significantly outperforms the existing state-of-the-art approaches, proving the effectiveness of class-wise generalization in few-shot text classification.
We present a method to represent input texts by contextualizing them jointly with dynamically retrieved textual encyclopedic background knowledge from multiple documents. We apply our method to reading comprehension tasks by encoding questions and passages together with background sentences about the entities they mention. We show that integrating background knowledge from text is effective for tasks focusing on factual reasoning and allows direct reuse of powerful pretrained BERT-style encoders. Moreover, knowledge integration can be further improved with suitable pretraining via a self-supervised masked language model objective over words in background-augmented input text. On TriviaQA, our approach obtains improvements of 1.6 to 3.1 F1 over comparable RoBERTa models which do not integrate background knowledge dynamically. On MRQA, a large collection of diverse QA datasets, we see consistent gains in-domain along with large improvements out-of-domain on BioASQ (2.1 to 4.2 F1), TextbookQA (1.6 to 2.0 F1), and DuoRC (1.1 to 2.0 F1).
Syntactic information contains structures and rules about how text sentences are arranged. Incorporating syntax into text modeling methods can potentially benefit both representation learning and generation. Variational autoencoders (VAEs) are deep generative models that provide a probabilistic way to describe observations in the latent space. When applied to text data, the latent representations are often unstructured. We propose syntax-aware variational autoencoders (SAVAEs) that dedicate a subspace in the latent dimensions dubbed syntactic latent to represent syntactic structures of sentences. SAVAEs are trained to infer syntactic latent from either text inputs or parsed syntax results as well as reconstruct original text with inferred latent variables. Experiments show that SAVAEs are able to achieve lower reconstruction loss on four different data sets. Furthermore, they are capable of generating examples with modified target syntax.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا