Do you want to publish a course? Click here

Text Modeling with Syntax-Aware Variational Autoencoders

86   0   0.0 ( 0 )
 Added by Yijun Xiao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Syntactic information contains structures and rules about how text sentences are arranged. Incorporating syntax into text modeling methods can potentially benefit both representation learning and generation. Variational autoencoders (VAEs) are deep generative models that provide a probabilistic way to describe observations in the latent space. When applied to text data, the latent representations are often unstructured. We propose syntax-aware variational autoencoders (SAVAEs) that dedicate a subspace in the latent dimensions dubbed syntactic latent to represent syntactic structures of sentences. SAVAEs are trained to infer syntactic latent from either text inputs or parsed syntax results as well as reconstruct original text with inferred latent variables. Experiments show that SAVAEs are able to achieve lower reconstruction loss on four different data sets. Furthermore, they are capable of generating examples with modified target syntax.



rate research

Read More

Recent work on generative modeling of text has found that variational auto-encoders (VAE) incorporating LSTM decoders perform worse than simpler LSTM language models (Bowman et al., 2015). This negative result is so far poorly understood, but has been attributed to the propensity of LSTM decoders to ignore conditioning information from the encoder. In this paper, we experiment with a new type of decoder for VAE: a dilated CNN. By changing the decoders dilation architecture, we control the effective context from previously generated words. In experiments, we find that there is a trade off between the contextual capacity of the decoder and the amount of encoding information used. We show that with the right decoder, VAE can outperform LSTM language models. We demonstrate perplexity gains on two datasets, representing the first positive experimental result on the use VAE for generative modeling of text. Further, we conduct an in-depth investigation of the use of VAE (with our new decoding architecture) for semi-supervised and unsupervised labeling tasks, demonstrating gains over several strong baselines.
We introduce an improved variational autoencoder (VAE) for text modeling with topic information explicitly modeled as a Dirichlet latent variable. By providing the proposed model topic awareness, it is more superior at reconstructing input texts. Furthermore, due to the inherent interactions between the newly introduced Dirichlet variable and the conventional multivariate Gaussian variable, the model is less prone to KL divergence vanishing. We derive the variational lower bound for the new model and conduct experiments on four different data sets. The results show that the proposed model is superior at text reconstruction across the latent space and classifications on learned representations have higher test accuracies.
Existing text style transfer (TST) methods rely on style classifiers to disentangle the texts content and style attributes for text style transfer. While the style classifier plays a critical role in existing TST methods, there is no known investigation on its effect on the TST methods. In this paper, we conduct an empirical study on the limitations of the style classifiers used in existing TST methods. We demonstrate that the existing style classifiers cannot learn sentence syntax effectively and ultimately worsen existing TST models performance. To address this issue, we propose a novel Syntax-Aware Controllable Generation (SACG) model, which includes a syntax-aware style classifier that ensures learned style latent representations effectively capture the syntax information for TST. Through extensive experiments on two popular TST tasks, we show that our proposed method significantly outperforms the state-of-the-art methods. Our case studies have also demonstrated SACGs ability to generate fluent target-style sentences that preserved the original content.
180 - Zhongli Li , Qingyu Zhou , Chao Li 2020
Pre-trained Transformer-based neural language models, such as BERT, have achieved remarkable results on varieties of NLP tasks. Recent works have shown that attention-based models can benefit from more focused attention over local regions. Most of them restrict the attention scope within a linear span, or confine to certain tasks such as machine translation and question answering. In this paper, we propose a syntax-aware local attention, where the attention scopes are restrained based on the distances in the syntactic structure. The proposed syntax-aware local attention can be integrated with pretrained language models, such as BERT, to render the model to focus on syntactically relevant words. We conduct experiments on various single-sentence benchmarks, including sentence classification and sequence labeling tasks. Experimental results show consistent gains over BERT on all benchmark datasets. The extensive studies verify that our model achieves better performance owing to more focused attention over syntactically relevant words.
We introduce a new syntax-aware model for dependency-based semantic role labeling that outperforms syntax-agnostic models for English and Spanish. We use a BiLSTM to tag the text with supertags extracted from dependency parses, and we feed these supertags, along with words and parts of speech, into a deep highway BiLSTM for semantic role labeling. Our model combines the strengths of earlier models that performed SRL on the basis of a full dependency parse with more recent models that use no syntactic information at all. Our local and non-ensemble model achieves state-of-the-art performance on the CoNLL 09 English and Spanish datasets. SRL models benefit from syntactic information, and we show that supertagging is a simple, powerful, and robust way to incorporate syntax into a neural SRL system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا