Do you want to publish a course? Click here

Contextualized Representations Using Textual Encyclopedic Knowledge

401   0   0.0 ( 0 )
 Added by Mandar Joshi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a method to represent input texts by contextualizing them jointly with dynamically retrieved textual encyclopedic background knowledge from multiple documents. We apply our method to reading comprehension tasks by encoding questions and passages together with background sentences about the entities they mention. We show that integrating background knowledge from text is effective for tasks focusing on factual reasoning and allows direct reuse of powerful pretrained BERT-style encoders. Moreover, knowledge integration can be further improved with suitable pretraining via a self-supervised masked language model objective over words in background-augmented input text. On TriviaQA, our approach obtains improvements of 1.6 to 3.1 F1 over comparable RoBERTa models which do not integrate background knowledge dynamically. On MRQA, a large collection of diverse QA datasets, we see consistent gains in-domain along with large improvements out-of-domain on BioASQ (2.1 to 4.2 F1), TextbookQA (1.6 to 2.0 F1), and DuoRC (1.1 to 2.0 F1).



rate research

Read More

104 - Dianqi Li , Yizhe Zhang , Hao Peng 2020
Adversarial examples expose the vulnerabilities of natural language processing (NLP) models, and can be used to evaluate and improve their robustness. Existing techniques of generating such examples are typically driven by local heuristic rules that are agnostic to the context, often resulting in unnatural and ungrammatical outputs. This paper presents CLARE, a ContextuaLized AdversaRial Example generation model that produces fluent and grammatical outputs through a mask-then-infill procedure. CLARE builds on a pre-trained masked language model and modifies the inputs in a context-aware manner. We propose three contextualized perturbations, Replace, Insert and Merge, allowing for generating outputs of varied lengths. With a richer range of available strategies, CLARE is able to attack a victim model more efficiently with fewer edits. Extensive experiments and human evaluation demonstrate that CLARE outperforms the baselines in terms of attack success rate, textual similarity, fluency and grammaticality.
The clinical named entity recognition (CNER) task seeks to locate and classify clinical terminologies into predefined categories, such as diagnostic procedure, disease disorder, severity, medication, medication dosage, and sign symptom. CNER facilitates the study of side-effect on medications including identification of novel phenomena and human-focused information extraction. Existing approaches in extracting the entities of interests focus on using static word embeddings to represent each word. However, one word can have different interpretations that depend on the context of the sentences. Evidently, static word embeddings are insufficient to integrate the diverse interpretation of a word. To overcome this challenge, the technique of contextualized word embedding has been introduced to better capture the semantic meaning of each word based on its context. Two of these language models, ELMo and Flair, have been widely used in the field of Natural Language Processing to generate the contextualized word embeddings on domain-generic documents. However, these embeddings are usually too general to capture the proximity among vocabularies of specific domains. To facilitate various downstream applications using clinical case reports (CCRs), we pre-train two deep contextualized language models, Clinical Embeddings from Language Model (C-ELMo) and Clinical Contextual String Embeddings (C-Flair) using the clinical-related corpus from the PubMed Central. Explicit experiments show that our models gain dramatic improvements compared to both static word embeddings and domain-generic language models.
Contextualized word representations have proven useful for various natural language processing tasks. However, it remains unclear to what extent these representations can cover hand-coded semantic information such as semantic frames, which specify the semantic role of the arguments associated with a predicate. In this paper, we focus on verbs that evoke different frames depending on the context, and we investigate how well contextualized word representations can recognize the difference of frames that the same verb evokes. We also explore which types of representation are suitable for semantic frame induction. In our experiments, we compare seven different contextualized word representations for two English frame-semantic resources, FrameNet and PropBank. We demonstrate that several contextualized word representations, especially BERT and its variants, are considerably informative for semantic frame induction. Furthermore, we examine the extent to which the contextualized representation of a verb can estimate the number of frames that the verb can evoke.
With the emerging branch of incorporating factual knowledge into pre-trained language models such as BERT, most existing models consider shallow, static, and separately pre-trained entity embeddings, which limits the performance gains of these models. Few works explore the potential of deep contextualized knowledge representation when injecting knowledge. In this paper, we propose the Contextualized Language and Knowledge Embedding (CoLAKE), which jointly learns contextualized representation for both language and knowledge with the extended MLM objective. Instead of injecting only entity embeddings, CoLAKE extracts the knowledge context of an entity from large-scale knowledge bases. To handle the heterogeneity of knowledge context and language context, we integrate them in a unified data structure, word-knowledge graph (WK graph). CoLAKE is pre-trained on large-scale WK graphs with the modified Transformer encoder. We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks. Experimental results show that CoLAKE outperforms previous counterparts on most of the tasks. Besides, CoLAKE achieves surprisingly high performance on our synthetic task called word-knowledge graph completion, which shows the superiority of simultaneously contextualizing language and knowledge representation.
Recently, knowledge graph (KG) augmented models have achieved noteworthy success on various commonsense reasoning tasks. However, KG edge (fact) sparsity and noisy edge extraction/generation often hinder models from obtaining useful knowledge to reason over. To address these issues, we propose a new KG-augmented model: Hybrid Graph Network (HGN). Unlike prior methods, HGN learns to jointly contextualize extracted and generated knowledge by reasoning over both within a unified graph structure. Given the task input context and an extracted KG subgraph, HGN is trained to generate embeddings for the subgraphs missing edges to form a hybrid graph, then reason over the hybrid graph while filtering out context-irrelevant edges. We demonstrate HGNs effectiveness through considerable performance gains across four commonsense reasoning benchmarks, plus a user study on edge validness and helpfulness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا