Do you want to publish a course? Click here

An Algorithm to Satisfy the QoS Requirements in a Heterogeneous LoRaWAN Network

106   0   0.0 ( 0 )
 Added by Dmitry Bankov
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

LoRaWAN is a popular low power wide area network technology widely used in many scenarios, such as environmental monitoring and smart cities. Different applications demand various quality of service (QoS), and their service within a single network requires special solutions for QoS provision. We consider the problem of QoS provision in heterogeneous LoRaWAN networks that consist of several groups of devices that require different packet loss rate (PLR). To solve this problem, we develop a mathematical model that can find the PLR distribution in a LoRaWAN network. With the model, we show that the PLR can vary significantly, and it is wrong to consider only the average PLR for the QoS provision. Finally, we develop an algorithm for assigning modulation and coding schemes to end-devices that provides PLRs below the required thresholds.

rate research

Read More

Appearing on the stage quite recently, the Low Power Wide Area Networks (LPWANs) are currently getting much of attention. In the current paper we study the susceptibility of one LPWAN technology, namely LoRaWAN, to the inter-network interferences. By means of excessive empirical measurements employing the certified commercial transceivers, we characterize the effect of modulation coding schemes (known for LoRaWAN as data rates (DRs)) of a transmitter and an interferer on probability of successful packet delivery while operating in EU 868 MHz band. We show that in reality the transmissions with different DRs in the same frequency channel can negatively affect each other and that the high DRs are influenced by interferences more severely than the low ones. Also, we show that the LoRa-modulated DRs are affected by the interferences much less than the FSK-modulated one. Importantly, the presented results provide insight into the network-level operation of the LoRa LPWAN technology in general, and its scalability potential in particular. The results can also be used as a reference for simulations and analyses or for defining the communication parameters for real-life applications.
Technical advances in ubiquitous sensing, embedded computing, and wireless communication are leading to a new generation of engineered systems called cyber-physical systems (CPS). CPS promises to transform the way we interact with the physical world just as the Internet transformed how we interact with one another. Before this vision becomes a reality, however, a large number of challenges have to be addressed. Network quality of service (QoS) management in this new realm is among those issues that deserve extensive research efforts. It is envisioned that wireless sensor/actuator networks (WSANs) will play an essential role in CPS. This paper examines the main characteristics of WSANs and the requirements of QoS provisioning in the context of cyber-physical computing. Several research topics and challenges are identified. As a sample solution, a feedback scheduling framework is proposed to tackle some of the identified challenges. A simple example is also presented that illustrates the effectiveness of the proposed solution.
In this paper we advocate the use of device-to-device (D2D) communications in a LoRaWAN Low Power Wide Area Network (LPWAN). After overviewing the critical features of the LoRaWAN technology, we discuss the pros and cons of enabling the D2D communications for it. Subsequently we propose a network-assisted D2D communications protocol and show its feasibility by implementing it on top of a LoRaWAN-certified commercial transceiver. The conducted experiments show the performance of the proposed D2D communications protocol and enable us to assess its performance. More precisely, we show that the D2D communications can reduce the time and energy for data transfer by 6 to 20 times compared to conventional LoRaWAN data transfer mechanisms. In addition, the use of D2D communications may have a positive effect on the network by enabling spatial re-use of the frequency resources. The proposed LoRaWAN D2D communications can be used for a wide variety of applications requiring high coverage, e.g. use cases in distributed smart grid deployments for management and trading.
Cyber-physical control applications impose strict requirements on the reliability and latency of the underlying communication system. Hence, they have been mostly implemented using wired channels where the communication service is highly predictable. Nevertheless, fulfilling such stringent demands is envisioned with the fifth generation of mobile networks (5G). The requirements of such applications are often defined on the application layer. However, cyber-physical control applications can usually tolerate sparse packet loss, and therefore it is not at all obvious what configurations and settings these application level requirements impose on the underlying wireless network. In this paper, we apply the fundamental metrics from reliability literature to wireless communications and derive a mapping function between application level requirements and network level parameters for those metrics under deterministic arrivals. Our mapping function enables network designers to realize the end-to-end performance (as the target application observes it). It provides insights to the network controller to either enable more reliability enhancement features (e.g., repetition), if the metrics are below requirements, or to enable features increasing network utilization, otherwise. We evaluate our theoretical results by realistic and detailed simulations of a factory automation scenario. Our simulation results confirm the viability of the theoretical framework under various burst error tolerance and load conditions.
100 - Zhiguo Ding 2020
The next generation Internet of Things (IoT) exhibits a unique feature that IoT devices have different energy profiles and quality of service (QoS) requirements. In this paper, two energy and spectrally efficient transmission strategies, namely wireless power transfer assisted non-orthogonal multiple access (WPT-NOMA) and backscatter communication assisted NOMA (BAC-NOMA), are proposed by utilizing this feature of IoT and employing spectrum and energy cooperation among the devices. Furthermore, for the proposed WPT-NOMA scheme, the application of hybrid successive interference cancelation (SIC) is also considered, and analytical results are developed to demonstrate that WPT-NOMA can avoid outage probability error floors and realize the full diversity gain. Unlike WPT-NOMA, BAC-NOMA suffers from an outage probability error floor, and the asymptotic behaviour of this error floor is analyzed in the paper by applying the extreme value theory. In addition, the effect of a unique feature of BAC-NOMA, i.e., employing one devices signal as the carrier signal for another device, is studied, and its impact on the diversity gain is revealed. Simulation results are also provided to compare the performance of the proposed strategies and verify the developed analytical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا