No Arabic abstract
Technical advances in ubiquitous sensing, embedded computing, and wireless communication are leading to a new generation of engineered systems called cyber-physical systems (CPS). CPS promises to transform the way we interact with the physical world just as the Internet transformed how we interact with one another. Before this vision becomes a reality, however, a large number of challenges have to be addressed. Network quality of service (QoS) management in this new realm is among those issues that deserve extensive research efforts. It is envisioned that wireless sensor/actuator networks (WSANs) will play an essential role in CPS. This paper examines the main characteristics of WSANs and the requirements of QoS provisioning in the context of cyber-physical computing. Several research topics and challenges are identified. As a sample solution, a feedback scheduling framework is proposed to tackle some of the identified challenges. A simple example is also presented that illustrates the effectiveness of the proposed solution.
The salient features of blockchain, such as decentralisation and transparency, have allowed the development of Decentralised Trust and Reputation Management Systems (DTRMS), which mainly aim to quantitatively assess the trustworthiness of the network participants and help to protect the network from adversaries. In the literature, proposals of DTRMS have been applied to various Cyber-physical Systems (CPS) applications, including supply chains, smart cities and distributed energy trading. In this chapter, we outline the building blocks of a generic DTRMS and discuss how it can benefit from blockchain. To highlight the significance of DTRMS, we present the state-of-the-art of DTRMS in various field of CPS applications. In addition, we also outline challenges and future directions in developing DTRMS for CPS.
There is a pressing need to interconnect physical systems such as power grid and vehicles for efficient management and safe operations. Owing to the diverse features of physical systems, there is hardly a one-size-fits-all networking solution for developing cyber-physical systems. Network slicing is a promising technology that allows network operators to create multiple virtual networks on top of a shared network infrastructure. These virtual networks can be tailored to meet the requirements of different cyber-physical systems. However, it is challenging to design secure network slicing solutions that can efficiently create end-to-end network slices for diverse cyber-physical systems. In this article, we discuss the challenges and security issues of network slicing, study learning-assisted network slicing solutions, and analyze their performance under the denial-of-service attack. We also present a design and implementation of a small-scale testbed for evaluating the network slicing solutions.
Orchestrated collaborative effort of physical and cyber components to satisfy given requirements is the central concept behind Cyber-Physical Systems (CPS). To duly ensure the performance of components, a software-based resilience manager is a flexible choice to detect and recover from faults quickly. However, a single resilience manager, placed at the centre of the system to deal with every fault, suffers from decision-making overburden; and therefore, is out of the question for distributed large-scale CPS. On the other hand, prompt detection of failures and efficient recovery from them are challenging for decentralised resilience managers. In this regard, we present a novel resilience management framework that utilises the concept of management hierarchy. System design contracts play a key role in this framework for prompt fault-detection and recovery. Besides the details of the framework, an Industry 4.0 related test case is presented in this article to provide further insights.
Cyber-physical control applications impose strict requirements on the reliability and latency of the underlying communication system. Hence, they have been mostly implemented using wired channels where the communication service is highly predictable. Nevertheless, fulfilling such stringent demands is envisioned with the fifth generation of mobile networks (5G). The requirements of such applications are often defined on the application layer. However, cyber-physical control applications can usually tolerate sparse packet loss, and therefore it is not at all obvious what configurations and settings these application level requirements impose on the underlying wireless network. In this paper, we apply the fundamental metrics from reliability literature to wireless communications and derive a mapping function between application level requirements and network level parameters for those metrics under deterministic arrivals. Our mapping function enables network designers to realize the end-to-end performance (as the target application observes it). It provides insights to the network controller to either enable more reliability enhancement features (e.g., repetition), if the metrics are below requirements, or to enable features increasing network utilization, otherwise. We evaluate our theoretical results by realistic and detailed simulations of a factory automation scenario. Our simulation results confirm the viability of the theoretical framework under various burst error tolerance and load conditions.
Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particular, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support.